ROUND LAKE AUDITORIUM
MASTER PLAN

Prepared by
Lacey Thaler Reilly Wilson Architecture & Preservation, LLP
Albany, NY

for
the Village of Round Lake
Round Lake, NY
Table of Contents

Acknowledgments

A. Executive Summary

B. Introduction

C. Existing Conditions Assessment

D. Recommended Projects, Tasks, Timelines, and Budgets

E. Funding Opportunities

F. Conclusion

G. Appendices

 Appendix A: Archival Imagery
 Appendix B: Cost Estimate
Acknowledgments

The Association to Preserve/ Protect/ Plan Round Lake (AP3)

Round Lake Village Board of Trustees
 Mayor Gary Putman
 Trustee Thomas Bergin
 Trustee Heidi L. Parker
 Trustee Paul Block
 Trustee Matthew Coldrick
 Clerk Kim Sheridan-Dugmore

Lacey Thaler Reilly Wilson Architecture & Preservation, LLP
 Partner-In-Charge
 Mark E. Thaler

 Architectural Staff
 Alexandra Messina
 Rucha Kamath

Erdman Anthony
 Jerry Young
 Bruce Wallmann

Andover Organ Company
 Matthew Bellochio

Danda, Inc.
 James Diamantopoulos

A Special Thanks To:
 Lydia Hoffman and Dan Peczka
1. Executive Summary

This Master Plan for the Round Lake Auditorium has been prepared for the Village of Round Lake. Lacey Thaler Reilly Wilson Architecture & Preservation, LLP (LTRW) was contracted to survey and evaluate the condition of the existing historic building and the Davis-Ferris Tracker Organ housed within, and to provide a master plan for their future preservation and restoration.

The purpose of the master plan is to prioritize and guide future work related to needed repairs to the building and organ, and to examine the functional shortcomings of the facility in order that it might reach its full potential as a cultural venue for the Village of Round Lake.

The auditorium was surveyed and documented by Lacey Thaler Reilly Wilson Architecture & Preservation and its sub-consultants over several site visits in 2019 and 2020. Archival information such as drawings, reports, photographs, and previous events held at the auditorium, was reviewed. Existing building conditions were evaluated by LTRW and Erdman Anthony evaluated the mechanical, electrical, plumbing, and fire protection systems. Andover Organ Company evaluated the organ, which they have been servicing for many years. Daniel Peczka, who has been intimately involved with the theatrical systems in the auditorium for many years, has provided information on those systems.

In general, the building, including the mechanical, electrical, plumbing, and fire protection systems and the organ are in fair condition. This report addresses the deficiencies which should be addressed. The Village is currently implementing a floor repair and a seating replacement project. LTRW provided guidance on the extent and methodology of the floor repairs and proposed seating layout during the course of this study.

A meeting with village residents and members of the Association to Preserve/Protect/Plan Round Lake (AP3) was held in June 2019 to explore issues associated with event types and frequencies, noise, and parking. Additional meetings were held with Village officials to discuss specific issues related to the existing facility. While a number of technical and functional deficiencies were identified, the current types and frequency of events are not likely to change in the foreseeable future. These include music performance, film showings, community events, and rentals.

This Master Plan includes a general existing conditions assessment; eight proposed building-related projects; recommendations to restore the Davis-Ferris Tracker Organ; budget costs for proposed work; and potential funding opportunities.
2. Introduction

In 1868, the first summer camp meeting of the Methodist Episcopal Church took place on the grounds of Round Lake. It was estimated that around 8,000 people attended over the course of ten days. Because of its success, what is now Round Lake Village, began to develop with more permanent residences and buildings. By 1876, popularity and crowds of the camp meetings grew so large that the need for a more permanent and formal structure was necessary to protect its visitors from the outdoor elements. Only a few years later, the Round Lake Auditorium was completed in 1885.

The original structure was constructed as a wood-framed structure measuring approximately 140 feet in length by 82 feet in width. The auditorium consists of a central clerestory bay with low wings on either side in which the north façade was fully enclosed, the south façade was fashioned to include an existing preaching stand, and the east and west low wings had roll down canvas sidewalls. In 1888, the building underwent its first significant alteration. An annex was constructed to house the Ferris Tracker Organ, originally built for a church in New York City, which was designated a National Historic Landmark in 2017. This annex, described as a “polygonal-apse”, replaced the original preaching stand and enclosed the south end of the original structure, while the roll down canvas side walls remained. Within the annex, a stage with tiered risers leads to the level where the organ was placed. Stairs on either side of the organ lead down to two rooms located at grade level, beneath the organ. On the southwest corner of the annex, a bell tower of open-timber construction was erected to house a 600-pound bell made by the Jones Bell Foundry of Troy in 1876 that was originally located on top of the old preaching stand. The next significant alteration took place in 1915 in which a sloped floor and theater seats were installed, that altered approximately 5 feet of the lower portion of the north wall. In addition, side walls consisting of multipaned windows were added to the east and west lower side bays. By this time the auditorium was fully enclosed.

Over the course of several years, the auditorium was used less for its Methodist camp meetings and evolved into a space for both musical and theatrical performances along with other community gatherings. During this evolution, only minor repairs and restorations were made to make the building more comfortable and usable for longer periods of time without compromising or significantly altering the original structure.

The Round Lake Auditorium is a contributing structure of the Round Lake Historic District which was added to the National Register of Historic Places in 1975.
Fig. 2: Map of Round Lake from the village archives.
3. Existing Conditions Assessment

During multiple site visits, the auditorium was inspected visually, documented, and photographed by LTRW and its sub-consultants. The evaluations are based upon visual observations made on site and have not involved investigations by way of destructive probes or non-destructive evaluation and testing (NDE) which were outside the scope of this report.

In order to provide clear context for a discussion of existing conditions and develop options for proposed renovation projects, LTRW developed existing and proposed floor plans of the facility. For consistency and ease of reference, the end of the building which includes the organ is referred to as south, although in true coordinates is actually southeast.
EXISTING UPPER LEVEL FLOOR PLAN

MAIN AUDITORIUM SPACE

STAGE

ORGAN

BELL TOWER ABOVE
a. Building Structure

The building’s structure primarily consists of wood framing with wood and iron Fink trusses supporting the majority of the high roof above the clerestory windows and Queen post timber trusses utilized above the stage. The structure is supported by timber posts which originally rested on stone foundations and connected with iron collars according to the Historic Structure Report completed in 1978. No stone foundations are currently visible above grade. The exterior posts appear to have been cut above the concrete which follows the slope of the raked floor that was installed circa 1919. It is undetermined whether the interior posts which pass through the sloped concrete floor remain supported by stone foundations or whether concrete foundations were provided when the floor was installed.

Fig.3: View of the fink trusses over auditorium seating looking north from the stage.

Fig.4: View of the fink trusses and Queen post timber trusses, looking south from the auditorium seating area.
i. Wood Framing

In 1997, Clough Harbor Associates (CHA) performed a structural inspection of the auditorium and provided recommendations for the stabilization of the structure. A majority of the stabilization work was undertaken but not all of the recommendations have been fulfilled. Uneven settlement and failing structural members caused the north wall to bow considerably at the center and the truss supporting the roof on the south end of the auditorium was bearing on the organ’s case.

According to Village records, additional structural stabilization work was completed in 2004-2005 with a Federal grant to reinforce and repair flooring underneath the organ to arrest ongoing settlement. Foundation repairs were also undertaken as part of this work.

In 2020, Craig Maloney, PE, prepared drawings to repair the bottom of one of the interior wood posts on the western side of the building as it had settled, likely due to rot in the base. A new concrete footing has also designed for this post.

LTRW observed a number of structural deficiencies throughout the structure. Because some of the framing deformations have been noted for decades, and structural interventions have been made, it is not possible to determine whether some of these repairs have been successful in arresting further movement. This is particularly true in the area around the organ where roof loads continue to deform the organ case despite earlier interventions having been taken.

Deformation of the north-south purlins that span between the roof trusses in the main gable are evidence of being over-stressed. This is particularly evident over the 1888 Annex where the span is even longer between trusses. This was an original design flaw. Heavy snow loads over more than a century have permanently deformed the members. This deficiency has not been addressed in any meaningful way to date, other than the repair of specific members. It is not recommended
that the original purlins be replaced, however a structural analysis should be undertaken and sister members be installed that follow the curvature of the existing roof structure to arrest any future deformation. The use of steel flitch plates between the members may be warranted to maintain the existing purlin depth.

The truss above the front of the organ case still appears to be transferring loads into the case on the east side of the organ. This requires additional structural analysis. Jacking of the truss and supplementation with steel to provide the stiffness required may be appropriate in this instance. The structural repairs to this truss should not transfer roof loads through or adjacent to the organ. Roof loads should be transferred to the exterior walls so as not to interfere with the organ.

The main roof trusses should also be analyzed to determine whether any of their members are overstressed and to determine their current capacity to accommodate any additional weight. The addition of theatrical lighting and any acoustical treatments that might be desired in the future should only be considered after such an analysis is completed. The addition of these features can certainly enhance the functionality of the space as a performance venue.

Exposed exterior framing at the bell tower exhibits rot at multiple joint locations and at the bases of some of the posts. These members require Dutchman repairs, where the deteriorated section is removed and supplemented with another section of wood. None of the major structural elements that could be observed appeared to warrant full replacement, however significant water damage was observed in the belfry of the tower which we were not able to access.

Other areas of potential rot include the bases of the posts which are in contact with the exterior foundation walls and where interior posts pass through the concrete floor there is potential for rot or insect damage. Wood sills adjacent to grade are also likely to exhibit some deterioration due to rot. When clapboards are removed for repair or replacement, the underlying wood framing should be inspected.

ii. Concrete Foundation Walls

The existing concrete foundation walls date back to circa 1915 when the sloped concrete floor and side walls were installed. Prior to this time the timber posts were supported on stone foundations and posts were connected with iron brackets. Instances of this were still evident when the Historic Structure Report was completed in 1978. In 2004-2005, structural repairs were made on the building which included foundation work. It is unclear as to the exact nature of that work but all visible foundations today are concrete.

The concrete foundations in the area of the sloped floor are thicker below the timber post locations and appear to have individual footings below each post. The thinner section of concrete foundation wall below the windows may not extend much below grade. There are areas close to grade where voids are evident. The thinner section of wall acts as a retaining wall for the dirt which was added below the sloped concrete floor. It is not known whether the concrete has any steel or iron reinforcing. However, given the age of the concrete and no sign of ferrous corrosion, it is likely unreinforced.

There are two noticeable cracks in the concrete foundation. The first is a vertical crack on the east end of the north foundation wall. The second is a horizontal crack located along the east foundation wall, in the first three bays to the right of the entry doors. The cracks appear in the thinner section of wall which is acting to retain the fill below the sloped floor and not taking significant roof loading. These cracks should however be repaired before water infiltration causes ice jacking and the cracks
worsen. A recommended and immediate repair solution is to use a flowable, cementitious grout to fill the horizontal crack in the eastern foundation wall. The vertical crack in the northern wall should be “stitched” back together using stainless steel helical rods that extend into the concrete on both sides of the crack and then similarly filling the crack with a flowable grout.

In addition, on the north foundation wall, the top edge on the western-most end was chipped due to a garbage truck backing into that corner of the building. That damage should be patched. Because the thinner section of wall between the post locations does not appear to extend much below grade, there is at least one area on the north wall where animals have burrowed below. These areas should be filled and a stainless steel wire mesh buried along the perimeter of the wall to inhibit burrowing animals. Such dens can create significant voids below the sloped concrete floor and cause localized subsidence.

Additional recommendations are discussed later in this report under proposed Project 2.
Fig. 9: North facade of the auditorium; overall view of the north foundation wall.

Fig. 10: View of east foundation wall.

Fig. 11: View of the west foundation wall.
b. Exterior Conditions

Overall, the condition of the exterior of the auditorium is poor to fair. Many windows are inoperable and have not been properly restored, the paint is cracked and peeling, and some of the trim, clapboards, and shingles need to be replaced or restored. Additionally, areas of the roof show heavy wear as well as areas that need to be repaired.

i. Roof

Originally, the main gable roof material was entirely wood shingles. In 1888 when the Annex was added onto the main structure, the side wing roofs were extended. Following the use of wood shingles, future roofing materials consisted of slate, flat-seam sheet metal, and asphalt strip shingles. The most recent roof replacement took place in 2008-2009 and its life expectancy is likely 25 years from its installation date depending on the type of asphalt shingles that were used.

In general, the condition of the existing roof is good, however there are specific areas of concern. The condition of the pyramidal bell tower roof was not observed. There are a few areas on the main roof showing heavy wear, and specifically on the west lower wing eave, the roof appears to be failing. This is an atypical failure which should be investigated. There are other areas where the shingles are raised on the high gable roof which may be caused by damage to the underlying wood roof sheathing. These areas should be investigated and repaired.

Fig.12: View of the east side of the auditorium’s roof.

Fig.13: Area of concern along the edge of the low wing roof on the west side.
ii. Wood Clapboards, Shingles, and Trim

The overall condition of the existing wood clapboards, shingles, and trim is poor. Most of the original clapboard, shingles, and trim remain, but through observation and photographs, it is evident that some areas and elements, such as clapboards, have been replaced. In addition, the paint has failed in numerous areas. In some areas, there is no paint at all, which leaves the original building fabric exposed. This creates opportunity for water infiltration causing rot and deterioration.

Other areas of concern are where animals have chewed holes through the wood trim. On the southeastern wall, an animal has chewed through and removed earth at the base trim and is able to enter the auditorium. At the northwest corner, it appears a squirrel chewed a hole on the underside of the soffit of the eave.

Additionally, at the east entrance in the low side wing, the base of the door trim has rotted due to poor draining and water infiltration. In the bay to the right of those doors, a section wood trim running along the base of the wall is buried under grade. The grade along the wall should be removed and the skirt board should be replaced. The entire building should be repainted using historically accurate colors after a paint seriation analysis is performed by a materials conservator.
iii. Windows

Throughout the auditorium, there are four types of windows that were installed during the different building campaigns from 1885-1915. Overall, all of the windows at the auditorium should be restored to be operable. Glass panes in many windows are missing and the paint on the wooden sash is failing or allowing moisture infiltration leading to wood rot and deterioration. The original window hardware and mechanisms should be restored and refinished.

Type 1 – Stain Glass Windows:

Each face of the polygonal Annex has double-hung stained-glass windows with a transom light at the organ level. These were installed in 1888. Each sash of the double-hung windows is made of 24 individual panes of glass inserted between wood muntins and each transom is made of 9 individual panes of glass. The glass is stained in hues of yellow and green and most of the glass panes are original. Some panes that were damaged and replaced with clear glass panes are painted rather than stained to match the existing colors. These replacement panes should be replaced with glass that accurately match the original. Archival photographs indicate that the south façade had similar stained-glass windows on either side of the double doors at the ground level. But in the 1970’s these were removed, and the opening was covered with clapboard siding on the exterior and infilled with plywood on the interior.

Fig.17: Typical Type-1 stain glass window located in the annex.

Fig.18: Located in the east dressing room, the original windows have been removed and infilled.
Fig.19: As seen in this photo, some of the stain glass panes have been replaced by regular glass and have been painted. This image shows the distinct difference between the two.

Fig.20: Close up of the original 1888 stain glass window.

Fig.21: Colored light from the stain glass windows.
Type 2- Clerestory Windows:
The central bay of the auditorium has clerestory windows that were installed during the construction of the original 1885 tent-like structure. The existing sash appears to have a single pane of glass with 4 muntin divisions on the exterior. During the construction of the Annex in 1888, two additional clerestory windows were installed on each side, that also consist of the same single pane of glass with 4 muntin divisions, however, they are narrower than the windows of the original structure. The windows span about 100 feet in length and operate with an “elbow arm” mechanism designed by J.C. Moninger Co. of Chicago. The company was formed in 1870 and this mechanism is assumed to be original to the building. The company continued in business from 1923 to 1967 as the American-Moninger Greenhouse Manufacturing Corporation. The windows operate by turning a gear attached to a pulley system which then turns the pipes that run the full length of the windows, essentially a rack and pinion system. One end of the elbow arm is attached to the bottom sash of each window, so that when the mechanism is initiated, it either pushes or pulls the bottom sash to open or close the windows. This mechanism was primarily used in greenhouses, solariums, conservatories, garages, and similar clerestory long-span structures for the purpose of ventilation. Because the mechanism is currently not operable and there was no access to inspect these windows up close, the overall function and condition of the clerestory windows and mechanism could not be assessed at the time of the survey.

Fig.22: Clerestory windows located on both the east and west side serve the purpose of ventilating the auditorium.
Fig.23: Manufacturer’s label shown on the gear case.

Fig.24: View of gear that controls the full length pipe, that can operate runs up to 400 feet.

Fig.25: Cover of manufacturer’s catalogue.

Fig.26: Page within manufacturer’s catalogue showing a similar mechanism.
Type 3- Center-Pivot Windows:

The east and west low bays were originally not enclosed when the auditorium was constructed in 1885 and instead used roll down canvases. The existing divided lite windows were installed during the 1915 campaign. Typically, these multi-pane single sash windows operate on a center pivot. A set of pivots are installed at the top and bottom of each sash.

Specifically, the windows located along the sloped section of the auditorium floor are varying in height and multiple-lite configurations range from 3’ x 8’ starting at the beginning of the slope near the stage, to 3’ x 5’ at the northern most end of the building. These windows have a latch at the bottom rail to secure it in a closed position. In addition, some of these windows are installed on a wooden base to accommodate the height differentiation. Originally, when the windows were installed in 1915, each bay consisted of three center-pivoting windows, but in 1967 the center window sash in each bay was replaced with plywood. When the building was in a state of disrepair during the 1970’s, most of the glass was broken or damaged. It appears that when the glass replacement work was done, only the face of the frames, sashes, and muntins were painted and the returns were left exposed, causing these areas to fail. Most of these windows do not function properly. Latches either do not lock or are stuck in the locked position leaving some windows to remain open and some windows forced closed.

The southernmost ends of the lower wings have a 12-lite variation of the center pivot windows. These are currently nailed fixed and some of the bottom lites have been infilled with plywood. Currently, only a single lite on the east side is broken and missing. On the west side, when the restrooms were constructed, the windows were blocked by an interior partition.

Fig.27: Center-pivot windows of various heights conforming to slope of floor along the west low wing wall.

Fig.28: Center-pivot windows along the east low wing wall.
Type 4- Fixed Windows:

The windows, along with their configuration on the north wall, are original to the building. This side consists of 2 levels of fixed multi-pane windows that are grouped together in combinations of 4 and 3, progressing upward along the elevation. There is one 4-lite fixed window at the gable end of this elevation. The group of four windows on the lower level have narrower muntin divisions as compared to the group of three windows above. A detailed inspection of these windows is recommended as we were unable to view the current conditions up close. Additionally, two small 12-lite fixed sash windows on both the east and west walls of the Annex, where the dressing rooms are located, are currently nailed fixed.

Fig.29: Southernmost end of the lower wing where a 12-lite variation of the center pivot windows are located. These have been nailed shut.

Fig.30: Small 12-lite fixed sash window.

Fig.31: Broken lite of the 12-lite, nailed center pivot window pictured above in Fig. 28.

Fig.32: Original 1884 fixed windows on the north wall of the auditorium
iv. Doors

Throughout the auditorium, there are different types of interior doors that were installed during different time periods. Some have even been removed from their original location and been reused elsewhere. Most of the interior doors are in fair condition and have some of their original hardware.

As for the exterior doors, there are four distinct types. Most of these doors are in fair condition, with a few that show signs of rot, damage, and wear that need to be addressed.

Type 1- Five panel:
The south wall of the polygonal Annex has a pair of original five-panel double doors. A single leaf of these doors consists of two narrow vertical panels placed between a horizontal panel on the top and two horizontal panels at the bottom. Each of these panels have thick molding surrounds. Currently, some of the original hardware remains, but parts such as the exterior hardware have been removed, and latches at the top and bottom of the doors have replaced the original lock mechanism. These doors are not used as a primary entry or exit. The existing bead molding on one pair of the doors has broken, and in general, the paint has begun to crack and peel away, mainly at the bottom of these doors.

Fig.33: Original hinge hardware ca. 1888.

Fig.34: Original lock hardware ca. 1888.

Fig.35: Original pair of five panel doors on the south facade of the auditorium ca. 1888.
Type 2- Glazed two-panel:
The entrance doors to the auditorium on both west and east low wings are a half-glazed paneled double-doors each with a ten-lite transom. These doors were installed circa 1915. The glazed section of the door consists of 12 divided lites and the bottom section is divided into two horizontal panels with thin molding surround. Both doors have vertical rod panic exit hardware on the interior and thumb latch and pull hardware in addition to kickplates on the exterior. The lower panel on the east doors has completely deteriorated and needs to be replaced. Both pairs of doors need to be restored and weather stripped. Specifically, the pair of doors on the east side need to be properly rehung as they are currently not flush with one another. Furthermore, the security features of these doors are poor, as they only have floor bolts and have required “dead men” 2x4s to be added to the interior to keep the doors secure.

![Fig.36: Typical glazed two-panel door.](image)

![Fig.37: Glazed two-panel doors on the east side of the auditorium.](image)

![Fig.38: Close up of the doors shown above in Fig. 36; bottom panel and frame of door showing significant rot.](image)
Type 3- Six & four panel:
A pair of doors are located perpendicular to each other on the southwest corner under the bell tower. The door on the low side wing is a six-panel door with thin molding surrounds. Hardware consists of a vertical rod panic exit device on the interior and a lever handle and kick plate on the exterior. The base on the interior side of this door is worn due to heavy use.

The four-panel door on the polygonal Annex façade has two vertical panels between two horizontal panels on either end of the door and has heavy molding surrounds. This door is not original to the building. Hardware is fairly new and consists of a knob handle, a deadbolt lock, and a kickplate on the exterior side of the door.

![Fig.39: Six panel door; interior showing signs of wear.](image1)

![Fig.40: Four panel door from the exterior. Six panel door is located on the left.](image2)

![Fig.41: Interior side of the four panel door.](image3)
c. Interior Conditions

i. Davis-Ferris Tracker Organ

The Davis-Ferris Tracker organ was originally built in 1847 for the Calvary Episcopal Church in Manhattan and later moved to Round Lake Auditorium in 1888. Designated a National Historic Landmark in 2016, it survives in almost original condition and is still being played to this day. The organ is located in the Annex of the building, housed in a Gothic Revival wooden case at the top of the stage. Although the organ is regularly tuned and repaired on an as-needed basis, it is in need of major restoration work. Andover Organ Company, which has serviced the organ for many years, provided a written proposal based on the current conditions, which addresses needed work which can be accomplished in multiple phases if funding requires. Their proposal follows.

The organ is one of the finest examples of 19th century American organs in existence, hence its designation as a National Historic Landmark. Any changes to the auditorium must first consider how those changes might affect the organ. One reason that the organ has remained in relatively good working condition for so long is the fact that it has not been subjected to the environmental conditions of a heated building in the winter. This creates low humidity conditions which can dry out and crack wood and leather components within the organ.

Extreme summer heat is not good for the organ components either. Ventilation to dissipate those conditions which occur near the roof should be considered. Any changes in the environmental systems should be done in close consultation with conservators to ensure the organ survives for generations to come.

Fig. 42: Plaque outside auditorium stating the organ’s significance as a National Historic Landmark

Fig. 43: The organ is still in use and is frequently tuned.
Dear Mark:

Attached, per your request, are revised proposals for restoring selected parts of the Round Lake Auditorium organ in stages. This National Historic Landmark organ has survived in substantially original condition due to its isolation and relative neglect. Because of the Village’s limited budget, repairs have been made on an as-needed basis, as funds allowed. It would be ideal if a grant could be obtained to fund the organ’s complete restoration.

In the event that such a grant does not materialize, the attached proposals will serve as a guideline for restoring the organ in stages. This will, ultimately, be more expensive than removing and restoring the entire organ all at once. The organ’s structure is somewhat like a house of cards. Many of its larger components are attached to, or supported by, one another. Therefore, removing one large component, such as a wind chest, requires disassembling and removing several others (and building temporary supports to do so). This increases the cost of each stage. The photo below shows the interconnectedness of components behind the upper left front of the case.

Interconnected components behind the upper left portion of the case.
Here follows a brief description of each restoration stage in our proposal.

Stage 1 addresses safety issues in accessing parts of the organ for tuning, especially the Swell division at the top rear of the organ. The walk boards at the side and rear of the Swell box are very narrow and lack safety railings (see picture below.) We will build and install wider walk boards and railings.

![Swell tuning walkboards. Side walkboard (center) is cantilevered, with no railings.](image)

Stage 2 is for the restoration of the Pedal wind chest and two ranks of pipes at the top center of the organ, directly behind the façade. Many of the stopped wood pipes have cracked or split joints and are held together with masking tape (see pictures next page). Likewise, many of the metal pipes are tuned with masking tape, due to broken or missing tuning devices.
Stage 3 is for the restoration of the Great wind chests and pipes, located directly behind the center façade pipes. This is the largest division of the organ, with 2 exceptionally large wind chests and 17 ranks of pipes. Many of its pipes are in deplorable condition and need extensive repairs. There are some “runs” (wind leaks) between adjacent notes on the chests, which can only be corrected by removing and disassembling the chests. The removal of the Great wind chests will require the partial disassembly of many other components.

Back-to-front view showing Choir chest and pipes in foreground, with Swell vertical wooden trackers behind it. In the upper right are the two wind chests and pipes of the Great and the feet of the center façade pipes.
We have included with Stage 3 some case repairs and reinforcements which could be done while the Great wind chest and pipes are removed for restoration. Because of the way it was constructed, the center of the bottom half of the case is leaning forward due to the weight of the case pipes sitting on it. This center section needs to be better braced to the internal structure of the organ to correct this bulging. In addition, the roof truss which runs through the organ just behind the façade has settled over the years, pushing down on and breaking the side case panels it runs through (see photos below.) These panels need to be repaired and repositioned. But before this can be done, the roof truss must be stabilized or reinforced to prevent further settling.

Stage 4 is for the restoration of the Choir wind chest and pipes located behind the Great. In addition to the usual repairs, the soft metal feet of some tall pipes are starting to collapse, causing those pipes to lean. Those pipes will need additional upper supports.
Stage 5 is for the restoration and repairs of the large Pedal windchests and pipes at floor level on each side. The tops of these chests are made of thick wide single planks of pine. Due to shrinkage and drying over the years, these planks have developed longitudinal cracks which leak air. We will rout out the cracks and glue in wood splines to fill them. We have also included an option for extending the compass of these chests and pipes from 18 to 25 notes, to match the compass of the upper pedal chest. This would allow these stops to be more useful.

Stage 6 is for the restoration of the manual key actions. The rollerboards to the 3 manual wind chests will be restored and re-bushed as necessary. The horizontal wooden trackers for the 3 manual divisions were replaced with new some years ago. But the vertical wooden trackers which go up to the rollerboards and wind chests are still the original ones and are now quite fragile. They will be replaced with new. We have included with Stage 6 an option to extend the manual to pedal coupler range from 25 to 30 notes, to suit the present pedal board.

Stage 7 is for the restoration and repair of the console area, including the drawknobs, stop jams and sliding doors. Over the years, many of the drawknob labels have been replaced by others with different styles of fonts and engraving. We will repair the drawknobs and their traces and replace the non-original labels with new bone discs with historically compatible engraving, and also install LED lights of the keyboards and pedals.

Stage 8 is for the restoration and re-gilding of the façade pipes. The soft metal toe tips, which regulate the wind flow to the pipes, have collapsed under the weight of these large, heavy metal pipes. A number of these pipes were tuned in the past with duct tape, because their brittle metal tuning flaps broke off long ago. The pipes will be repaired and fitted with new toe tips and internal tuning sleeves to prevent future damage. After stripping and priming, the pipes will be re-gilded to restore their original gold color and luster.

Stage 9 is for the repair and restoration of the case. The current brown paint is most likely not original. Organ cases of the 1840s and 1850s would have been faux grained to imitate walnut or rosewood. Working with painted decoration conservator, Marylou Davis, of Woodstock, CT, we will test strip portions of the case to determine the original finishes and recommend an appropriate treatment. We will reproduce and replace missing case pieces and ornaments. The restored case will be much more aesthetically attractive than at present.

We used a similar approach in our 2017 restoration/rebuilding of an historic 1853 William B.D. Simmons organ in Duxbury, Massachusetts. The case, which had been painted brown, was repainted with a faux grain rosewood finish. Here is a link to an article about that project, with before and after pictures of the case.
https://www.agohq.org/may-2018-tao-feature-article/

We have not included proposals for the Swell wind chest and pipes, nor the two large wind reservoirs, nor the manual keyboards. The Swell was restored in the 1990s and the
reservoirs and keyboards were restored in 2009-2010. If the organ is comprehensively restored, these components could undergo some further refinements.

Aside from extending the compass of the original, lower Pedal stops and the manual to pedal couplers, we are not suggesting any other changes. There are several other “improvements” which could be considered. The organ was originally a G-compass instrument, with its keys extending 5 notes below low C. Some have suggested returning it to this key compass. This would improve its historicity but limit its usefulness in playing some of the organ repertoire. Likewise, the question of whether to repaint the case in faux grain or a solid color can be debated. We would suggest that a grant be sought to hold a conference of noted organ historians to determine the possible goals and scope of the organ’s restoration.

We hope that these proposals will enable to Village of Round Lake to successfully obtain grant monies for the organ’s restoration. Feel free to call or email me if you have any questions.

Sincerely,

Matthew M. Bellocchio
Andover Organ Company
ii. Performance Area

The auditorium has a raised, platform stage within the Annex. It is medium-sized and develops into tiered risers which lead to the level at which the organ is located. Wooden railings run along the tiered riser section. The stage has north-south oriented floor boards and some of those were replaced during the structural stabilization work of the stage and organ. Overall, the stage, tiered risers, and organ level are in good condition, showing signs of standard wear and tear. It is recommended that the entire performance area be refinished.

Fig. 44: View of the stage, tiered risers, and organ level located within the annex of the auditorium.

Fig. 45: Archival image of a performance on stage, without the stage extension; Source: Round Lake Village archive.
A stage extension is typically in place at the front of the stage but can be removed if required.

Currently, no level of the stage, risers, or organ level is wheelchair accessible. A ramp is located at stage right that can be used to bring items onto the stage level but it is too steep to meet accessibility requirements. At a minimum, the stage level should be made accessible. Consideration should also be given to providing access to the organ level.

iii. Main Auditorium Space

The original structure built in 1885 is what makes up the main auditorium space today. This section of the building consists of a high clerestoried bay with two lower side wings, a pit area in front of the stage, and two main entrances on the east and west sides. At the west entry, there is a concession stand and two public restrooms. This is also the primary entrance as it is accessible directly from
the parking area. The east entry is used as a secondary entrance and also provides access to the backstage area.

The existing auditorium seating consists of three sections within the center bay. Prior to the beginning of seat removal in 2019, there were seats located in both low wing areas. All sections had plywood seats with metal frames but due to the poor condition of the seats, all the seats were removed by the spring of 2020. Currently, the seating is being replaced under a separate contract. The installation of these seats will be phased along with repair work on the concrete floor.

Originally, the auditorium had a level earthen floor. This was replaced a few years later with an asphalt floor installed in 1888 when the Annex was constructed. The existing sloped concrete flooring in the auditorium was installed during the 1915 campaign. It consists of 4-foot by 6-foot concrete
slabs on grade. The northern two thirds of the floor is sloped. Some of the slabs show signs of substantial settlement below. Currently, the middle section of flooring is being repaired. The most severe cases of slab settlement are along the east and west walls and the north-south column lines.

A level concrete floor begins directly in front of the stage and ends at the second row of seats; and was poured the full width of the auditorium, including in the areas east and west of the stage. This section of floor was installed on top of the 1915-era concrete floor and has raised the elevation. It is in good condition. Only a few spots may need to be repaired where the seats were bolted into the concrete. It appears that the original concrete slab, similar to the slabs installed in 1915, remains at the east and west entrances. Specifically, at the east entrance, the poured concrete does not appear to have bonded completely with the old slab and has begun to chip away.

Fig.54: The control booth is pictured in the center of the stand-alone structure located at the rear of the auditorium.

Fig.55: Technical equipment controls mounted to the north wall.
Round Lake Auditorium
Village of Round Lake, New York

Technical Infrastructure Historical Narrative

Daniel Peczka, Auditorium Technical Consultant
2020-06-11
The Round Lake Auditorium began broadening the types of programming offered to patrons in the late 1980s. Prior to this time period, the Auditorium was mainly used for religious events, organ recitals, movie nights, and the occasional orchestra concert. The introduction of resident community theatre organizations using the space beginning in 1990 led to the need for more modern technical equipment. The technical infrastructure can be broken down into four periods of time: pre-1990, the 1990s, the early to mid-2000s, and today.

Pre-1990

General lighting is provided by the schoolhouse style globe chain pendant fixtures mounted over the seating areas and the stage. Stage lighting is provided by par cans rigged on wood battens with rope in a few positions over and in front of the stage. There is no audio system in the building.

The 1990s

The par can system is removed and replaced with banks of par 38 outdoor floodlight fixtures mounted on the wood columns on either side of the stage in 1990. These fixtures are hardwired into a series of home use rheostat slide dimmers off stage right. There are also 10 receptacles installed off stage right with the slide dimmers to plug in traditional stage lighting fixtures such as ellipsoidals or fresnels as needed.

In 1994, a donation of stage lighting dimmers and a lighting console are accepted from Schenectady Light Opera company. The dimmer packs are hardwired above the restroom/concession area and the lighting console is installed in the back of the house. This is an analog control system that utilizes a bundle of low voltage control cable run from the back of the house down to the dimmer packs. There are a total of 24 dimmers that allow the use of additional stage lighting fixtures.

The Early to mid-2000s

In 2001, a donation of an audio system was accepted from a church in Utica, NY. This is the first time that a full PA system is installed in the building. The system consists of 4 speaker cabinets, a mixing console, one power amplifier, and a snake control cable. At the time of installation in the Auditorium, the mixing console was new and the rest of the system was from the early 1990s.

Sometime between 2000 and 2004 a full electrical service upgrade was completed in the building. The service upgrade included transitioning from fuses to circuit breakers, and the addition of a second 200A service being brought into the building.

In 2004, the stage lighting system was fully upgraded. The old analog controlled dimmers above the restroom/concession area were replaced with digitally (DMX) controlled dimmers now relocated under stage left. A new sub-panel with three 80A legs was installed under the stage to accommodate the new dimmers and any touring dimmer racks that may come in for an event. New stage lighting fixtures were installed on the three building pipes over the seats closest to the stage.
Also in the mid-2000s, the general lighting was improved with the addition of track lighting positions over the side aisles controlled from the sub-panel in the back of the house next to the control room. Concurrently, duplex receptacles were installed on the mid-beam running north to south along both side aisles. These receptacles are also controlled from the sub-panel in the back of the house. Both of these upgrades were purpose installations- the track lighting for art shows and the receptacles for paper mache lanterns at Village community events.

A portable 10’ x 14’ projection screen was procured in 2012. In 2015, a commercial video projector was added.

Today

The stage lighting and audio systems underwent a full upgrade facilitated by a state funded grant in 2019.

Audio- all of the existing equipment was replaced with new speaker cabinets, mixing console, and a permanent installation equipment rack off stage right. A simple use system was also installed with a wall station mounted off stage right.

Stage Lighting- the lighting console and lighting fixtures were replaced. All of the new lighting fixtures incorporate LED technology. Some of the traditional incandescent stage fixtures are maintained in inventory for specific requirements of certain events.
Round Lake Auditorium

Location: Village of Round Lake, New York

Equipment List as of June 2020

Stage Lighting

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Item</th>
<th>Year Procured</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ETC IonXE console with EOS fader wing 2UD (includes one 24 inch touchscreen monitor and one 20 inch standard monitor)</td>
<td>2019</td>
</tr>
<tr>
<td>1</td>
<td>Elation DMX-Branch four port DMX hub opto-isolator (not RCMI capable)</td>
<td>2019</td>
</tr>
<tr>
<td>1</td>
<td>NSI DOS9800 8 x 20A dimmer pack under stage left, three pin stage connectors</td>
<td>2004</td>
</tr>
<tr>
<td>1</td>
<td>ETC ColorSource PAR (RGB-Time LED engine)</td>
<td>2019</td>
</tr>
<tr>
<td>6</td>
<td>Elation Fuze PAR Z175 {RGBW LED engine with 8 deg. to 35 deg. motorized zoom}</td>
<td>2019</td>
</tr>
<tr>
<td>6</td>
<td>Altman Ge12 Lekos</td>
<td>2004</td>
</tr>
<tr>
<td>14</td>
<td>PAR G4 Par Cans</td>
<td>2004</td>
</tr>
</tbody>
</table>

Audio

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Item</th>
<th>Year Procured</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K-Array Kommander KAM4 amplifiers</td>
<td>2019</td>
</tr>
<tr>
<td>1</td>
<td>QSC MP-40 zone processor</td>
<td>2019</td>
</tr>
<tr>
<td>1</td>
<td>QSC MP wall station to select presets and adjust main level located off stage right</td>
<td>2019</td>
</tr>
<tr>
<td>4</td>
<td>K-Array Python KP102 line array cabinets (2 per side, stacked, dead hung)</td>
<td>2019</td>
</tr>
<tr>
<td>2</td>
<td>K-Array Thunder KMT21P subs (1 per side, pit area)</td>
<td>2019</td>
</tr>
<tr>
<td>1</td>
<td>QSC KW122 active stage monitor</td>
<td>2019</td>
</tr>
<tr>
<td>1</td>
<td>Midas M32 digital desk located in the house mix position (row 10, center section house left)</td>
<td>2019</td>
</tr>
<tr>
<td>1</td>
<td>Midas DL32 stage box (32 input XLR, 16 output XLR) located off stage right in audio rack</td>
<td>2019</td>
</tr>
<tr>
<td>1</td>
<td>D-Link DSR-1000AC Wireless Dual WAN 4-Port Gigabit VPN Router with 802.11ac Support</td>
<td>2019</td>
</tr>
<tr>
<td>1</td>
<td>Apple 9.7" iPad (Early 2018, 32GB, Wi-Fi Only, Space Gray)</td>
<td>2019</td>
</tr>
<tr>
<td>1</td>
<td>Middle Atlantic Wall Mount Rack Model: DWR-16-22PD</td>
<td>2019</td>
</tr>
<tr>
<td>1</td>
<td>Furman PL-PRO DMC 20A Power Conditioner with Voltmeter/Ammeter</td>
<td>2019</td>
</tr>
<tr>
<td>1</td>
<td>Shure SM58 wired microphone</td>
<td>2014</td>
</tr>
<tr>
<td>1</td>
<td>Shure PGX handheld wireless microphone</td>
<td>2014</td>
</tr>
<tr>
<td>1</td>
<td>Boom microphone stands</td>
<td>2014</td>
</tr>
</tbody>
</table>

Video

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Item</th>
<th>Year Procured</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cannon Realis SX6000 Commercial Video Projector</td>
<td>2015</td>
</tr>
<tr>
<td>1</td>
<td>Da-Lite Fast Fold Screen 10' x 14'</td>
<td>2012</td>
</tr>
</tbody>
</table>
iv. Support Areas

1. Technical Support

As programming for the auditorium evolved throughout the years, modern technical equipment such as stage lighting and control boards were introduced into the auditorium to enhance the different types of performances. Daniel Peczka is the auditorium’s technical consultant and has provided a narrative that lists all existing equipment, required equipment and recommendations. The report is as follows:

2. Concessions

The location of the concession area is at the west main entrance. It was installed in the early 1990s along with two public restrooms. Generally, the concession area consists of limited counter space, a triple sink, a medium-sized refrigerator, and a glass display case. The space does not support the auditorium’s current and future needs and it limits the items that are available to guests during events. Overall, this area is in fair condition and needs to be upgraded. The location of the concession area near the stage is problematic as people gather in this area during events and performances. The equipment is outdated, the layout is inefficient, and the lighting is poor. In Project 3, explained later in the report, we recommend relocating the concession area to the north (rear) of the auditorium to maximize its functionality.

Fig.56: The existing concession stand located at the main entrance is not adequate and causes congestion.

Fig.57: This images shows part of the set-up of the concession area.
3. Toilet Rooms

The auditorium currently has two public restrooms, one for men and one for women. They are located directly adjacent to the concession area on the west side of the stage. Each restroom has two stalls with commercial-grade partitions, floor-mounted toilets, a wall hung urinal in the men’s restroom, and one wall hung sink. Only the women’s room has an accessible toilet. The restroom doors are 6-panel, wood doors with lever hardware.

In 2005, the floors were redone to allow for the installation of new floor drains, new lighting fixtures and exhaust fans were installed, along with the commercial-grade partitions, and the walls were updated with water-resistant paneling.

In Project 3, explained later in the report, we recommend relocating public restrooms to the north (rear) of the auditorium.

![Fig.58: Existing women’s restroom, with commercial grade partitions.](image1)

![Fig.59: Additional view of the existing women’s restroom.](image2)

![Fig.60: Existing men’s restroom.](image3)

![Fig.61: Additional view of the existing men’s restroom.](image4)
4. Dressing Rooms and Dressing Room Toilets

Original to the 1888 annex, these dressing rooms are located directly beneath the organ at ground level. In 1900, restrooms and a center partition dividing the space into two were added. These dressing rooms are accessed either from the west exterior door under the bell tower or from the east side of the auditorium, through an approximately 5-foot high opening cut into the side of the stage. It appears this opening was made to create an internal path to the dressing rooms. The east entry point is hazardous to performers and visitors and the dressing rooms are only accessible through non-ADA compliant stairs.

Fig.62: View looking east underneath the stage, where the dressing rooms can be accessed.

Fig.63: Existing opening cut into the side of the stage in order to access the under-stage area.

Fig.64: View looking west underneath the stage.

Fig.65: The under-stage area and dressing rooms are accessible from the exterior. Window pictured is located in the restroom of the west dressing room.
The walls and ceilings throughout the dressing rooms consist of beadboard sheathing of various widths and a majority of it is original. An area of the ceiling is missing in the southeast dressing room and it looks to have been deliberately removed and has not been patched. The flooring is tongue and groove pine board flooring, varying in widths from about 4 inches to 5 ½ inches. These are original to the 1888 annex addition. In the restrooms, all fixtures date to the 1970s. The flooring is laminate wood installed over the original flooring.

Overall, both spaces, along with the restrooms, need to be updated with modern fixtures,
Fig. 70: Existing restroom in east dressing room.

Fig. 71: View looking northeast. Pictured is the restroom entry and stairs leading up to organ level from dressing room, in addition to areas of floor replacement.

Fig. 72: Existing restroom in east dressing room.

Fig. 73: View looking southwest.

Fig. 74: Door hits the toilet when open.
Fig. 75: View looking southwest in west dressing room. Stairs lead to organ level.

Fig. 76: Double doors on south facade.

Fig. 77: View looking west toward restroom in west dressing room.

Fig. 78: View looking northwest.

Fig. 79: View looking west in the restroom of the west dressing room.

Fig. 80: View looking north in west dressing room.
sufficient lighting, and the walls, ceilings, and floors need to be refinished. The dressing rooms need to be made accessible.
5. Storage
There are currently two main storage areas: underneath the stage near the dressing rooms; and at the north end of the auditorium (rear). The current storage space is sufficient in size but not conveniently located and difficult to use efficiently because of being under the stage risers.

v. Building Systems
1. Mechanical Systems

HVAC:
The auditorium does not have any heating, cooling, or ventilation equipment. It utilizes natural ventilation, through the use of operable windows and clerestory windows that aid in the ventilation of the space at the upper level. These windows are controlled manually by a mechanism designed and manufactured by the American-Moninger Greenhouse Manufacturing Corporation. This mechanism was designed and installed sometime between 1915 and 1920.

Below is a list of observations and recommendations:
- Not all of the clerestory windows were operable due to linkage being broken from the manual operator. It is recommended than an investigation and repair of the mechanism take place to allow for better ventilation.
- If the building was to be heated to allow for extended use through the fall and spring seasons, the following options would be investigated:
 - **In-floor Radiant Heat:** This requires the floor of the seating area to be redone to allow piping to be installed. This does not apply to the dressing rooms and bathrooms in the annex under the stage. These areas would need above floor radiant heat or unit heaters. If heat were to be installed it would require a boiler run on either natural gas, propane, or electric. Natural gas and propane are not on-site and would require a new service and the electrical service is currently not large enough to support an electric boiler and would require an upgrade. Additionally, this system would require glycol to prevent freezing in the winter when the building is not in use.
 - **Fan Coil Units:** Fan coils and piping to fan coils would need to be exposed which may affect the building aesthetics. Fan coil units require a boiler and the same requirements for the above, in-floor radiant heat, apply. This system too will require glycol to prevent freezing in the winter when the building is not in use. As for the electrical aspect of this option, the service may need to be upgraded even with a gas or propane fired boiler due to the added fan coil and pump motor loads.
 - **Variable Refrigerant Flow (VRF) Heating and Cooling System:** Refrigerant piping and indoor units would be exposed in the building, which may affect the building aesthetics. Additionally, the electric service is not large enough to support electric heating and would require an upgrade.

Exhaust Fans:
There are two small exhaust fans for the existing restrooms near the concession area on the west side of the auditorium. The fans are ceiling mounted and discharge outside. The original, existing restrooms in the dressing rooms do not currently have exhaust fans. The only recommendation is that exhaust fans should be provided for the dressing room restrooms. There are two small exhaust fans for the existing restrooms near the concession area on the west side of the auditorium. The fans are ceiling mounted and discharge outside. The original, existing restrooms in the dressing rooms do not currently have exhaust fans. The only recommendation is that exhaust fans should be provided for the dressing room restrooms.
2. Plumbing Systems

Drainage:
The sanitary drainage from the existing original restroom runs under the floor, above grade, then down underground out to a manhole on the south side of the building. The sanitary drainage for the new restrooms and concession area sink runs underground out the west side of the building, then underground to the manhole on the south side of the building. The building does not appear to have any other sanitary fixtures. Regarding stormwater drainage, all water runs off the roof of the building into area drains and there are no gutters on the building. *The installation of gutters and downspouts which are connected to a storm water collection system would significantly reduce splash at the base of the building and help reduce the potential for rot.*

Domestic Water Systems:
There is an existing ¾” diameter domestic water line entering the building in the Annex portion of the building (south). The service has a ¾” water meter and no backflow device. There is also a ¾” diameter cold water main that serves the building with a combination of copper and PVC piping. It was also observed that a five-gallon electric water heater is located under the concession area sink which serves both the concession area and adjacent restrooms. A drain located near the water meter allows for the system to be drained in the winter. Additionally, the existing original restrooms in the dressing rooms do not have hot water service.

It is recommended that hot water should be provided to the existing original restroom sinks if they are to be used and a backflow preventer should be installed on the incoming water service.

Fig.86: Existing water service; Photo taken by Erdman Anthony (E.A.).

Fig.87: Concession area sink and water heater.

Fig.88: Sanitary manhole located on the southeast side of the auditorium; Photo taken by E.A.
3. Electrical System

Electrical Distribution:
The utility electrical service appears to be a 240/120-volt, single phase, three-wire overhead secondary service fed from a utility pole-mounted 50kVA transformer. The utility provider is New York State Electric and Gas (NYSEG). The secondary service terminates at a weather head and conduit riser which is connected to a 320A wall-mounted meter cabinet mounted on the exterior wall of the south (stage) end of the building.

Conductors from the utility meter enter the building into a wireway where they appear to be tapped for two 200A enclosed circuit breakers labeled Main A and Main B just above the wireway.

Main A feeds a 200A, 40 circuit Siemens surface mounted panelboard labeled Main Panel A-1 with a 4-pole main circuit breaker located in the access corridor under the stage area. The panel has branch feeders and circuits to the following:

- 100A, 2 pole breaker serving Panel PP-1, which is a wall-mounted enclosure mounted below the stage which contains breakers and power distribution blocks which appears to provide power to stage lighting. Several cords and non-metallic sheathed cables with plugs extend from the enclosure to various pieces of lighting control equipment.
- 40A, 2-pole breaker serving Panel PP-2, which is located on the north end of the building, is a 16-circuit surface mounted Cutler Hammerer load center. The panel schedule and adjacent wiring indicate the branch breakers power track lights, house lights, and sound/projection equipment. Four spaces were observed to be available.
- 60A, 2-pole breaker serving original house lighting is a 12-circuit panel manufactured by The Trumbull Electric Manufacturing Company. It is recessed in the wall adjacent to the restrooms located on the west side of the stage area. Feeder appears to pass through a contractor adjacent to Panel A-1. Panel schedule indicates that the branch breakers power all of the main house lighting. Eight circuits are noted as being used, two circuits are not used, and two spaces available.
- 20A, a 2-pole breaker serves the organ.
- 60A, 2-pole break was on but the panel schedule has circuit designation blacked out indicating it may not be serving anything at this time and is spare.
- Twenty-three 20, 1-pole breakers serve lighting and receptacle circuits.
- Seven spaces were observed to be available for additional breakers.

Main B feeds a 200A, 40 circuit Siemens surface mounted panelboard labeled Main Panel B-1 which is the main lug only and located adjacent to Main Panel A-1 in the access corridor under the stage area. The panel has the following three circuits:

- 50A, 2-pole breaker feeding a 16-circuit surface mounted Cutler-Hammer load center labeled Stage Panel 01 with 40A, 2-pole main circuit breaker and located on the left side of the stage. The panel schedule indicates the ten 20A, 1 pole branch circuits power incandescent stage side lights, switched outlets, and some miscellaneous lights and outlets. Four spaces were observed to be available but were covered with electrical tape instead of blanks.
- 20A, 1 pole breaker for an audio rack.
- 20A, 1 pole breaker for a “fountain” which is believed to be located outside from the building.
- The rest of the panel contains thirty-six spaces for future breakers.

The majority of the branch circuiting is some vintage of MC cabling. Some newly installed non-metallic sheathed cable was observed serving selected receptacles and stage lighting. Very little EMT conduit was observed.
Below is a list of observations and recommendations:

- The 50 kVA utility transformer is rated for 208A full load even though the connected equipment ratings total 320A.
- Panelboard A-1 appears to be in good condition and appears to have been the main service panel at one point in the past since it has a main breaker.
- The two mains A and B along with Panelboard B-1 are in good condition and appear newer than Panelboard A-1. The service entrance appears to have been modified by splitting the service into two mains with one serving the existing Panelboard A-1 and the newer Panelboard B-1 in order to add the stage panel and audio rack.
- Existing house lighting panel is well beyond its service life, breakers may not properly trip, and replacement breakers are not expected to be available. This panel should be considered for replacement in any future renovation.
- Use of exposed non-metallic sheathed cable in theater buildings such as this building is not permissible per the National Electrical Code because of the construction type of the building. All non-metallic sheathed cables would need to be replaced.
- Some original cloth covered wiring was observed to be active and would also need to be replaced.
- Clearances in front of panel PP-1 were not in accordance with National Electrical Code requirements due to stage lighting control equipment.
- Abandoned knob and tube wiring system was observed in some of the under-stage areas. None appeared to be active and any exposed components should be removed.
- The utility meter is an ABB A1DQ+ unit which the literature indicates has the capability to capture the building demand. During the site visit, the digital display indicated the max KW was 7.63. Utility bills should be obtained to confirm the current peak demand for the building but if correct, then the electrical service does have some available capacity for future renovations.
- Significant branch circuit wiring has been added over the years for theater lights and other equipment power. An evaluation of these branch circuits was not part of the scope of this report, but is recommended.
Lighting:
The existing interior lighting primarily consists of various types of lighting fixtures as follows:

- Main auditorium seating: Pendant type with frosted globes. Lamp type expected to be incandescent based on the age and style of the fixture but could not confirm due to frosted globe.
- Stage Lighting: Combination of incandescent floodlights mounted to the existing building structure and theater-style lights mounted on the bottom chord of roof trusses.
- Back areas, bathrooms, concessions, etc.: Various types of incandescent lamps in porcelain bases.
- Concessions: Track with MR16 lamps on flexible pendant drops.
- Exterior lighting consists of wall-mounted frosted globes. Lamp type expected to be incandescent based on the age and style of the fixture but could not confirm due to the frosted globe.
- Combination exit sign/emergency lights with internal batteries were observed to be located over the main exit doors of the building.

Below is a list of observations and recommendations:

- Many of the fixtures are not required to have line voltage. Dimming could be retrofitted with LED lamps at any time to reduce energy costs.
- Additional exit signs and emergency lightings should be added during any future renovations to provide lighting and directional indication in all egress paths.
4. Fire Protection and Life Safety Systems

Fire Protection:
The auditorium currently does not have a fire protection system. When looking into future alterations and proposed projects for the auditorium the auditorium needs to comply with the 2020 New York State Building Codes. *With the proposed level of alteration and occupancy, a new sprinkler service would be required but it is recommended a dry system be provided to service the building since it is not heated. A room would be needed to house the service riser and dry valve assembly and it would also need to be heated year-round to prevent the system from freezing.*

Alarm Systems:
The auditorium has an existing burglar and fire alarm panel that was located under the stage. The Panel cover indicates it is protected by Imperial Security Systems, Inc. An existing heat detector was observed outside the blower room and an open splice connection inside the blower room.

A beam detector system was observed installed at the peak of the auditorium area with one component located above the projection booth at the north end and the other component expected to be located above the organ pipes at the south end of the auditorium. *It is recommended a new fire alarm system will need to be provided because the building is classified as Group A and the occupant load is greater than 300 occupants. A manual fire alarm system would consist of pull stations at exit doors, audible/visual notification devices throughout the building, and monitoring of the sprinkler system.*

5. Telecommunications

A coaxial service cable was observed to have been installed underground to the building from a pole different than the overhead electrical service and terminates inside the building under Panel A-1. Routers and telecommunication equipment were observed mounted to the wall between panels A-1 and B-a. A phone jack was observed above the burglar/fire alarm panel but not able to determine whether the line serving the jack was active.

There were no additional observations or recommendations for telecommunications.
d. Accessibility

Overall, there are many issues throughout the auditorium that do not address handicap accessibility. Below is a general list of accessibility issues:

- The existing stage is currently not accessible. Although there is a ramp on the east side of the stage, it is too steep and does not meet code requirements. The ramp landing also includes electrical equipment mounted to the wall which does not meet Code since it protrudes too far into the path of travel.
- Currently, the only accessible seating available in the auditorium is the front row but it does not have designated wheelchair spaces. Even though the pitch of the existing floor near the stage meets the requirements, it is not smooth or flat throughout. In the proposed projects, the repair of the existing concrete floor is discussed.
- The existing dressing rooms are not accessible to handicapped persons. Stairs are leading to both dressing rooms and the path to these stairs is also not accessible. Door openings, hardware, and restroom fixtures are also not ADA compliant.
- The counter height of the concession area is above the allowable height for accessibility.
- The existing newer bathrooms adjacent to the concession area have door hardware that is not accessible. While the bathrooms remain, the door hardware should be switched out to a lever handle.

Fig.104: Existing slope of the ramp accessing the stage is not ADA compliant.

Fig.105: Height of concession area counter does not comply with ADA required height.

Fig.106: Existing seating layout does not include wheelchair accessible spots.

Fig.107: Dressing rooms are not accessible to handicapped persons due to use of stairs.
e. Programmatic Needs and Opportunities

From its earliest use for Methodist preaching, Round Lake Auditorium has evolved into a center for performing arts for its region while remaining a gathering space for the community. From musical and theatrical performances, poetry readings, movie showings, and its famous organ concerts, the auditorium has held a variety of events throughout the years. But due to current accessibility issues, seasonal use, and lack of or outdated technical equipment, there are some programmatic limitations.

The Village of Round Lake is looking to attract more visitors, diversify its performers, and expand upon the types of events held at the auditorium. Improvements that are made to the building and site can create opportunities for events such as weddings, farmer’s markets, art shows, and craft fairs. In addition to physical improvements, it is important to think about the digital and media presence of the auditorium. Increased awareness can lead to more revenue and funding for future renovations and projects that are needed at the auditorium.

Fig.108: Above is part of a collection of archived programs provided by the Village of Round Lake. These programs show the multitude and variety of performances that have taken place at the auditorium throughout the years.
Fig. 109: Book fair; Photo courtesy Google Search “Round Lake Auditorium Events”.

Fig. 110: Theatrical performance; Photo courtesy Google Search “Round Lake Auditorium Events”.

Fig. 111: Organ concert; Photo courtesy Google Search “Round Lake Auditorium Events”.

Fig. 112: A recent wedding; Photo courtesy Google Search “Round Lake Auditorium Events”.

Fig. 113: Musical performance; Photo courtesy Google Search “Round Lake Auditorium Events”.
Improved dressing rooms are crucial to attract many high-quality performers which in turn can increase ticket sales and build the reputation of the venue. Additionally, patron amenities such as comfortable seating, good food, and excellent acoustics and lighting will provide a welcoming experience that will entice your audience to return often.

4. Recommended Projects, Tasks, Timelines, and Budgets

Combining existing conditions analysis and general recommendations, community input, and future goals for the site, this section provides recommended projects that strive to preserve, restore, and enhance the use of the auditorium and the National Historic Landmark organ housed within.

Because of the importance of the organ, and the complexity of its restoration, separate phased plans are provided for the restoration of the organ and for the auditorium building itself. Although they are separate, the recommended repairs and projects can be done in parallel with one another as funding is available.

Additionally, the overall cost for the project is included. For an itemized breakdown for each project, refer to Appendix b for the cost estimate provided by Danda, Inc.. All project totals are based on current construction costs and escalation must be considered for when the project is undertaken.

Organ Master Plan

The provided proposal completed by Andover Organ Company consists of a nine-stage restoration guideline, to perform on an as-needed basis or as funding becomes available. It is noted that a complete, one-time restoration would be more cost effective due to the complexity of the organ’s structure. Restoration work that is required for the organ consists of projects that range from repair of keys, pipes, and pedals, to the overall case in which the intricate parts of the organ are contained. Some of the issues found were due to the settling of a truss on top of the organ’s case, causing a domino effect of issues. Each project is detailed as follows:
SPECIFICATIONS
FOR THE
RESTORATION/REPAIRS IN STAGES
OF THE
ROUND LAKE AUDITORIUM ORGAN
ROUND LAKE, NEW YORK

November 11th, 2020

STAGE 1
IMPROVE WALKBOARDS AND RAILINGS FOR SAFER MAINTENANCE
Design and build new Swell walkboards and railings.
Add a railing for lower level walkboard from rear to front of organ.
Install wider walkboards with railings at sides and back of Swell box.

TOTAL COST: $9,000.00

GUARANTEE: 5 years

STAGE 2
PEDAL UPPER LEVEL SLIDER WINDCHEST AND PIPES RESTORATION

CLEAN ORGAN
Clean all portions of the organ to be worked on.

WIND SYSTEM
Seal all leaks on those portions of the organ to be worked on.
Repair and regasket all the windtrunks feeding the windchest.

WINDCHESTS
Remove the windchest and pipes to Andover shop for restoration.
Repair or replace the windchest table as necessary.
Reshim sliders to prevent undue leakage and ease of slider travel.
Re-cover sponcil areas and patch sponcils.
Re-cover Pedal pallets with felt and leather.
Install new pull-down wires.
Install new leather links or saddles.
Releather bungboard and bottomboard to prevent leakage.
Repair the ladder rollerboard under windchest as necessary.
Replace the top sets of squares to the chest.
Repair or replace the bottom sets of squares as necessary.
Make and install 2 new sets (horizontal & vertical) of wooden trackers.
Replace punchings in the key action from console to windchest.
Renot the key action from console to windchest.
Repair the stop action traces as necessary.
Reinstall and reconnect the windchest.
Reinforce racking to stabilize pipes.

PIPES
- Clean and repair the Pedal Bourdon and Violoncello pipes.
- Releather the Pedal Bourdon pipe stoppers (25 pipes).
- Replace missing tuning ears on Violoncello pipes as necessary.
- Install slide tuners as necessary on Violoncello.
- Check pipes for proper speech and volume.
- Reinstall, tune and regulate the pipes.

STOP LIST
PEDAL
- 16' Bourdon 25 Pipes
- 8' Violoncello 25 Pipes

TOTAL COST: $95,000.00

GUARANTEE: 5 years

STAGE 3
GREAT WINDCHESTS (2) AND PIPES RESTORATION

CLEAN ORGAN
- Clean all portions of the organ to be worked on.

WIND SYSTEM
- Seal all leaks on those portions of the organ to be worked on.
- Repair and regasket all the windtrunks feeding the windchest.

WINDCHESTS
- Remove the windchests and pipes to Andover shop for restoration.
- Repair or replace the windchest tables as necessary.
- Reshim sliders to prevent undue leakage and ease of slider movement.
- Re-cover the sponcil areas of the chests to prevent leakage.
- Releather bungboards to prevent leakage.
- Install new pulldown wires.
- Install new bushing cloth saddles.
- Remove toeboard warpage to prevent leakage and out-of-tuneness.
- Make pallets removable for easy access and repair.
- Re-cover pallets with felt and leather.
- Repair rackboards.
- Provide and install end blocks to support rackboards as necessary.
- Enlarge table and slider holes as necessary to ensure adequate wind to the pipes.
- Drill table, slider and toeboards holes for added bass (Night Horn).
Reinstall and reconnect the windchests.
Repair or replace offset tubing.

GREAT MANUAL PIPES
Clean all pipes except case pipes.
Repair all pipes except case pipes.
Install new slide tuners on the pipes as necessary to prevent future damage.
Replace bad replacement pipes as necessary.
Releather stoppers of all wood pipes.
Grease all stoppers.
Check all pipes for proper speech and volume.
Regulate all pipes in the Auditorium for proper volume and blend.
Tune the entire Great.

STOP LIST
8' 1st Open Diapason, Metal Restored 58 Pipes
8' 2nd Open Diapason, Zinc Restored 58 Pipes
8' Stopped Diapason Restored 58 Pipes
4' 1st Principal Restored 58 Pipes
4' 2nd Principal Restored 58 Pipes
4' Night Horn T.C. Restored 46 Pipes
2 2/3' Twelfth Restored 58 Pipes
2' Fifteenth Restored 58 Pipes
III Sesquialtra Restored 174 Pipes
III Mixture Restored 174 Pipes
8' Trumpet Restored 58 Pipes
4' Clarion Restored 58 Pipes

TOTAL COST: $340,000.00

GUARANTEE: 5 years

STAGE 3 OPTION
CASE REPAIRS AND REINFORCEMENTS
(To be done AFTER the roof truss running through the organ has been reinforced and supported to prevent further settling.)
Modify or replace the braces between the organ structure and case to reduce the case front bulging out at the impost (pipe toe) level.
Remove the upper case side panels damaged by roof truss settling.
Repair the case panels at Andover shop.
Reinstall the repaired case panels.

TOTAL COST: $17,000.00 (if done with Great windchest restoration)

GUARANTEE: 5 years
STAGE 4
CHOIR WINDCHEST AND PIPES RESTORATION

CLEAN ORGAN
Clean all portions of the organ to be worked on.

WIND SYSTEM
Seal all leaks on those portions of the organ to be worked on.
Repair and regasket all the windtrunks feeding the windchest.

WINDCHESTS
Remove the windchest and pipes to Andover shop for restoration.
Repair or replace the windchest table as necessary.
Reshim sliders to prevent undue leakage and ease of slider movement.
Re-cover the sponcil areas of the chest to prevent leakage.
Releather bungboards to prevent leakage.
Install new pulldown wires.
Install new bushing cloth saddles.
Remove toeboard warpage to prevent leakage and out-of-tuneness.
Make pallets removable for easy access and repair.
Re-cover pallets with felt and leather.
Repair rackboards.
Provide and install end blocks to support rackboards as necessary.
Enlarge table and slider holes as necessary to ensure adequate wind to the pipes.
Reinstall and reconnect the windchest.
Repair or replace offset tubing.

CHOIR MANUAL PIPES
Clean all pipes.
Repair all pipes.
Install new slide tuners on the pipes as necessary to prevent future damage.
Replace bad replacement pipes as necessary.
Releather stoppers of all wood pipes.
Grease all stoppers.
Check all pipes for proper speech and volume.
Regulate all pipes in the Auditorium for proper volume and blend.
Tune the entire Choir.

STOP LIST
8' Open Diapason Restored 58 Pipes
8' Stopped Diapason Restored 58 Pipes
8' Dulciana Restored 58 Pipes
4' Principal Restored 58 Pipes
4' Flute Restored 58 Pipes
2' Piccolo Restored 58 Pipes
II Furniture Restored 118 Pipes
8' Cremona Restored 58 Pipes
TOTAL COST: $195,000.00

GUARANTEE: 5 years

STAGE 5
PEDAL LOWER LEVEL VENTIL WINDCHESTS (4) AND PIPES RESTORATION
(16' DOUBLE OPEN DIAPASON & 16' OPEN DIAPASON)

CLEAN ORGAN
Clean all portions of the organ to be worked on.

WIND SYSTEM
 Seal all leaks on those portions of the organ to be worked on.
 Repair and regasket all the windtrunks feeding the windchests.
 Restore and releather the windchest ventil boxes and valves.

WINDCHESTS
 Remove the windchests and pipes to Andover shop for restoration.
 Rout out and repair windchest table cracks with wooden splines.
 Reglue and/or resecure the windchest tables to their grids as necessary.
 Relather the pallets on all windchests.
 Relather bungboards.
 Fill and rebore bungboard screw holes as necessary.
 Repair and rebush rollerboards as necessary.
 Repair or replace square rails as necessary.
 Reinstall and reconnect the windchests.
 Install new horizontal and vertical trackers as necessary.

TOTAL COST: $115,000.00

GUARANTEE: 5 years

STAGE 5 - OPTION
EXTEND COMPASS OF LOWER PEDAL DIVISION STOPS
Extend the two 16' Open Diapason stops, by 5 pipes each, to C-25.
 Provide new pipes to extend the stops.
 Design and build new chest(s) for the added pipes.
 Build and install legs or brackets to support the new chests.
 Provide and connect windlines for new chests to the stop ventils
 Provide and connect rollerboards and squares for added notes
 Build racking to support the new pipes.
 Voice, rack and install pipes, regulate and tune.

TOTAL COST: $39,000.00 (if done with windchest restoration.)
GUARANTEE: 5 years

STAGE 6
MANUAL KEY ACTION RESTORATION
Remove the key action components to Andover shop for restoration.
Restore the 3 manual rollerboards, rebushing as necessary.
Make new vertical trackers for the 3 manual divisions.
Add blocks to make top notes of Swell to Choir and Choir to Great couplers work.
Reinstall the key action components.
Adjust all manual key actions.

TOTAL COST: $41,000.00

GUARANTEE: 5 years

STAGE 6 - OPTION
MANUAL-TO-PEDAL COUPLER ACTION EXTENSION
Extend Pedal couplers from 25 to 30 notes.
Build a new 30-note coupler rollerboard.
Increase parallel coupler backfalls from 25 to 30 notes.
Make coupler jacks for added backfalls.
Make pull-down trackers for added coupler notes.
Install and adjust all mechanisms.

TOTAL COST: $11,000.00 (if done with manual key action restoration.)

GUARANTEE: 5 years

STAGE 7
CONSOLE / STOP ACTION RESTORATION
Remove the drawknobs and stop jambs to Andover shop for restoration.
Repair and refinish the stop jambs as necessary.
Clean and repair the drawknobs and their traces.
Replace damaged, missing, or inappropriate inset drawknob labels with new bone discs of historically appropriate style and engraving.
Repair the sliding console cover doors.
Clean, repair and wax the sliding door tracks.
Provide and install a LED light on the panel above the keyboards.
Provide and install a LED pedalboard light.

TOTAL COST: $40,000.00

GUARANTEE: 5 years
STAGE 8
FAÇADE PIPES RESTORATION

FAÇADE PIPES
- Remove facade pipes (23) and scallop board racks to Andover shop.
- Remove existing finish from the pipes.
- Clean and repair the pipes.
- Make and fit new internal tuning sleeves in the pipes.
- Apply two coats of primer or ground coat to the pipes.
- Regild the pipes with gold leaf.
- Repair and refelt, or replace, the scallop board racks, as necessary.
- Reinstall facade pipes and racks in the case.
- Tune and regulate the pipes for proper volume and tone.

TOTAL COST: $90,000.00

GUARANTEE: 5 years

STAGE 9
CASE REPAIR AND RESTORATION
- Disassemble the case and ship to Andover shop.
- Document existing case finishes and condition.
- Test strip portions of case finish to determine original finishes.
- Repair and reinforce the case pieces as necessary.
- Reproduce and replace missing louvers on case side doors.
- Design and build new internal supports for the case as necessary.
- Reproduce and replace missing cast and/or carved case ornaments.
- Strip or sand the existing case finish.
- Paint new primer or ground coats on case pieces.
- Paint new period appropriate finish on case pieces.
- Apply colored highlights on selected case ornaments, as appropriate.
- Transport and reassemble the case in the Auditorium.
- Do any necessary paint touch ups on site.

TOTAL COST: $170,000.00

GUARANTEE: 5 years

NOTE: Due to constant increases in costs, these prices may have to be revised if not accepted within 60 days.
Auditorium Master Plan

The Master Plan is subdivided into smaller projects for budgetary reasons and to ensure that any renovations do not affect or interfere with the events and activities that will be held in the auditorium. The recommendations for the restoration and preservation of the auditorium have been identified in the previous section and have been organized into nine different projects, each containing specific tasks, their estimated time frame, and budget. The projects are described and are recommended to be addressed in the prioritized order listed below:

a. Project 1 – Repair and Replacement of Concrete Flooring

Since the order for new seats has already been placed, repair and replacement of the concrete floor must take place first and foremost to address the uneven settlement of the concrete floor slabs in the sloped section of the auditorium.

The highlighted area indicated on the plan below is the concrete flooring that falls into this project scope: The settlement of the existing concrete slabs in this section of the auditorium is not as significant as it is along the east and west walls. Concrete slabs that are slightly raised should be ground down and any gaps between slabs are to be filled and grouted.

At the moment, work for this project has already begun under a separate contract. No concrete floor repair work is to be done in the lower side wing areas as well as the northern section of the auditorium along the exterior wall. These sections of the auditorium will be repaired in a second phase during Project 4.

Project Cost: $220,737.00
b. Project 2 – Replacement of Seating

Removal of the existing theater seats began in 2019 and was completed in the spring of 2020. The Village of Round Lake was able to purchase new auditorium seats through a New York State and Municipal Facilities Program grant that was awarded to the village.

These new seats will provide a much-needed upgrade, including the required wheelchair spaces and retractable armrests for ADA requirements, aisle seats, areas designated for loose seating to increase flexibility. The layout also allows for a midway, cross aisle to access all seating areas and a sound console mixing station. Since different sections of the sloped auditorium floor require different degrees of repair or replacement the installation of the new seats have been divided into two phases. The second phase of installation will take place during Project 4 once the floor repairs and replacement are complete.

Project Cost:
Under Contract

c. Project 3 – Structural Stabilization

Bell Tower Stabilization

The bell tower was constructed in 1888 during the construction of the Annex. By 1895, the base of the tower was enclosed and it remained that way until the 1970s. It has since been exposed to the elements, and peeling paint and has allowed the bases of the columns to rot. The restabilization of the bell tower should be addressed as soon as possible. Each column and other members supporting the bell tower should be analyzed to determine the extent of repair needed to stabilize the structure properly. Enclosure of the base of the bell tower would provide some additional protection and stability to its base while also providing a vestibule.

Project Cost: $81,064.00

d. Project 4 – Relocation of Restrooms and Concession, and Accessibility Upgrades

The purpose of this project is to upgrade the restrooms and concessions area, provide accessibility throughout the auditorium, and adjust the interior circulation of the space. All of these together will improve the user experience by creating more flexibility with events, spaces, and seating. This project consists of multiple sub-projects that should be completed in the following order and described below:

- Phase 2 of Project 1- Repair and Replacement of Concrete Floor
- Phase 2 of Project 2 – Replacement of Seating
- Relocation of restrooms and concession area and addition of storage rooms, ticket booth, and balcony.
- Stage accessibility.

The proposed floor plans for this project are as follows:
PROPOSED GROUND FLOOR PLAN

- STAGE RIGHT STORAGE
- WHEELCHAIR LIFT
- SOUTHEAST DRESSING ROOM
- BLOWER ROOM
- SOUTHWEST DRESSING ROOM
- BELL TOWER ABOVE
- STORAGE
- STAGE
- RAISED PLATFORM A + 1'-1" ±
- RAISED PLATFORM B + 3'-5" ±
- SLOPE UP
- SLOPE UP
- SLOPE UP
- SLOPE UP
- Ticket Booth
- MEN'S
- WOMEN'S
- CONCESSION
PROPOSED UPPER LEVEL FLOOR PLAN
Phase 2 of Project 1 - Repair and Replacement of Concrete Floor

The concrete slabs are to be removed in the highlighted areas in the plan below:

When the slabs are removed, a thorough investigation of the exterior foundation walls to determine the cause of the horizontal crack along the east concrete foundation wall and the vertical crack on the eastern side of the north foundation wall should be undertaken. Appropriate solutions should be suggested and implemented accordingly. Before the new concrete floors go in, plumbing work will be required for the relocation of the restrooms and concession area.

Once the investigation work and plumbing are complete, tiered platforms and ramps are to be installed within the east and west bays. Each side will contain two platforms accessible by a ramp running alongside the platforms from the front of the auditorium to the rear. The higher platform will be flush with the floor level along the north wall. The addition of tiered platforms will help to create flexible and accessible spaces within the auditorium. For example, these platforms can be set up with tables and chairs for a dinner-theater event or a wedding reception. Or it can be used for events such as art shows, craft fairs, and farmers markets, providing flat areas that are easy for artists and vendors to set up displays without having to worry about a sloped auditorium floor. The tiered platforms and the rear level will be designed to accommodate the existing windows along the east and west walls to avoid compromising the exterior envelope of the auditorium.

Lastly, a cross aisle will be installed in the middle of the fixed seating area in order to connect the ramps and aisles and to provide additional exit paths in the case of an emergency.

Project Cost: $269,689.00
Phase 2 of Project 2 – Replacement of Seating

Once the installation of the new concrete floor, ramps, cross aisle, and platforms are complete, the remaining auditorium seats can be installed.

Project Cost: Under Separate Contract

Relocation of restrooms and concession area and addition of storage rooms, ticket booth, and balcony and accessibility upgrades.

The existing restrooms and concession area are to be removed to allow for a large storage room and a ticket booth to greet attendees and for visitors to pick up their event tickets as they enter the building.

The new restrooms are to be relocated to the northwest corner. They will be fully ADA compliant and the restrooms will be larger than the previous ones with updated fixtures and lighting. The new concession area will relocate to the northeast corner. The size will accommodate for more counter space, a refrigerator, and a dishwasher. The larger size provides opportunity to expand the auditorium's capabilities during events by providing drinks and small snacks during performances or used as a catering space for receptions. In between these spaces will be a large storage room (Room 05) along with an enclosed stair leading to a balcony (Room 07). This balcony will serve as an area for flexible seating as well as the new location of the lighting control station and storage for AV equipment.

The main performance stage is currently not accessible. In order to make the stage accessible to visitors, guests, and performers, a lift should be installed on the east side of the stage where the existing ramp is. The ramp should remain but must be modified to allow for the lift.

Stage Accessibility

The main performance stage is currently not accessible. In order to make the stage accessible to visitors, guests, and performers, a lift should be installed on the east side of the stage where the existing ramp is. The ramp should remain but must be modified to allow for the lift.

Project Cost: $191,906.00

e. Project 5 – Technical Upgrades

Lighting and audio equipment have been added to the auditorium in multiple campaigns. The existing stage lighting and audio system in the auditorium were upgraded in 2019 and was funded by a New York State grant. Daniel Peczka has provided a thorough report of the existing theatrical lighting system and also provided a list of required repairs and upgrades to improve the audio-visual quality of the performances to be held at the auditorium. These repairs and upgrades are split into three phases and each individual repair has been evaluated using three levels of priority: low, medium, and high.

Additionally, if any new equipment is desired to be mounted to the existing structure, a load analysis must be undertaken to determine whether or not the existing structure can hold the additional weight and recommend appropriate measures to ensure the integrity of the structure.

The repairs, upgrades, and recommendations are listed on the following pages.

Project Cost: $191,906.00
General and Auxiliary Lighting

<table>
<thead>
<tr>
<th>Project</th>
<th>Priority</th>
<th>Scope</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>Funding Secured?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Lights</td>
<td>High</td>
<td>Upgrade the work lights over the stage.</td>
<td>Work with vendors to demo and test various solutions.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>House Lighting</td>
<td>High</td>
<td>Replace the house lighting over the seats with a modern LED solution.</td>
<td>Abatement of existing fixtures and wiring. Install temporary solution.</td>
<td>Work with vendors to demo and test various solutions.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td>Phase I is in progress for the 2020 season.</td>
</tr>
<tr>
<td>Understage Lighting</td>
<td>High</td>
<td>Improve the lighting in the understage area. Install receptacles along the understage walkway.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architectural Control System</td>
<td>High</td>
<td>Install a supervisory control system (i.e. ETC Paradigm) with multiple wall stations located to control all of the general and auxiliary lighting in the building.</td>
<td>Identify system scope and requirements.</td>
<td>Work with vendors to spec and quote a turn-key solution with control processor, power panel, power modules, wall stations, cable, and installation.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td>Required for new house lighting solution.</td>
</tr>
<tr>
<td>Pipe Organ Lighting</td>
<td>Medium</td>
<td>Upgrade the pipe organ façade lighting system. For Halogen flood fixtures are currently used to light the organ.</td>
<td>Design.</td>
<td>Work with vendors to demo and test various solutions.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Track Lighting Upgrade</td>
<td>Low</td>
<td>Transition the existing track lighting fixtures over the side aisles to a LED solution.</td>
<td>Design.</td>
<td>Work with vendors to demo and test various solutions.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Architectural Highlighting</td>
<td>Low</td>
<td>Design a lighting solution to highlight certain architectural elements of the interior of the space.</td>
<td>Design.</td>
<td>Work with vendors to demo and test various solutions.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Green Room Lighting</td>
<td>Low</td>
<td>Install a permanent lighting solution.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
<td></td>
<td>Existing track lighting in this area off stage right needs to</td>
</tr>
<tr>
<td>Dressing Room Lighting</td>
<td>Low</td>
<td>Improve the lighting in the dressing room areas.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stage Lighting

<table>
<thead>
<tr>
<th>Project</th>
<th>Priority</th>
<th>Scope</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>Funding Secured?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigging</td>
<td>High</td>
<td>Add a proper rigging arrangement for front of house lighting positions. Phase out the practice of rigging stage lighting fixtures directly to the building structure. Install a fairly concealable, lightweight system (i.e. ETC Prodigy Fly Pipe) for over stage lighting positions.</td>
<td>Design and structural engineering evaluation.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side Lighting</td>
<td>Medium</td>
<td>Install side lighting capability with fixtures off stage left and right.</td>
<td>Design.</td>
<td>Work with vendors to demo and test various solutions.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Over Stage Lighting</td>
<td>Medium</td>
<td>Install over stage lighting capability with fixtures.</td>
<td>Design.</td>
<td>Work with vendors to demo and test various solutions.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Networking</td>
<td>Medium</td>
<td>Install DMX capable DMX hubs and cabling for future lighting positions.</td>
<td>Design.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moving Lights</td>
<td>Low</td>
<td>Add a small inventory (4 to 6) of moving light fixtures to accommodate design requests for certain events.</td>
<td>Work with vendors to demo and test various solutions.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Audio

<table>
<thead>
<tr>
<th>Project</th>
<th>Priority</th>
<th>Scope</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>Funding Secured?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side Fill</td>
<td>High</td>
<td>Install speakers where needed to cover the side aisle areas currently being re-organized as gathering space.</td>
<td>Work with vendors to demo and test a solution.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall Stations</td>
<td>High</td>
<td>Add two more wall stations for the simple use system to be able to be controlled from the control room and the lobby area.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>High</td>
<td>Grow the inventory of backline equipment to include more monitors, wireless microphones, cable management, microphone stands, adapters, etc.</td>
<td>Work with vendors to demo and test various products.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patch Panel</td>
<td>Medium</td>
<td>Install an input patch panel near the pipe organ to connect microphones.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Fill</td>
<td>Low</td>
<td>Install speakers where needed to cover the pit area.</td>
<td>Work with vendors to demo and test a solution.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backstage Monitoring</td>
<td>Low</td>
<td>Install speakers and infrastructure to allow artists to hear the stage area from within the dressing room areas.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustical Dampening</td>
<td>Low</td>
<td>Explore the possibility of installing panels or foam where needed.</td>
<td>Design.</td>
<td>Funding, bidding, installation.</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proposed House Lighting Solution

Existing schoolhouse style incandescent pendant fixtures and associated wiring to be removed.

New down light fixtures to be installed on the wood vertical beams.

Optional architectural highlighting, uplight wood vertical beams.

Area between wood vertical beams to remain clear.

Track Lighting Upgrade To LED Solution

Existing schoolhouse style incandescent pendant fixtures and associated wiring to be removed.

Existing track infrastructure to remain. Replace PAR 38 heads with a LED solution. Add a third fixture per track to purpose for downlighting reception area.
f. **Project 6 – Dressing Room Upgrades**

The existing dressing rooms are insufficient, outdated, and not presentable to the visitors and performers who use these spaces. The intent of this project is to provide a comfortable and functional space not only for performers but to allow the auditorium to diversify its use for events such as weddings or receptions which require updated space. Both dressing rooms should have all ceilings, walls, and floors patched and refinished where there have been infills of different materials or areas that have been sawcut and removed, along with the installation of new lighting. The restrooms should have updated plumbing fixtures, and new lighting installed, as well as refinish the walls, ceilings, and floors.

Project Cost: $159,785.00

g. **Project 7 – Exterior Restoration**

Most of the exterior restoration work recommended in this project is critical to preserving the historic fabric of the auditorium. This project consists of two sub-projects that should be completed in the following order and described below:
- Window Restoration
- Envelope Restoration

Window Restoration

The restoration of all of the existing windows should include:
- Paint removal from window sash and frames
- Sash and frame component repairs and replacement
- Rot remediation and prevention
- Glazing and glass repair and replacement
- Window hardware, repair, replacement, and restoration

Additional recommendations are as follows:

For *Window Type 1 - Stained glass windows*, the replacement glass panes that have been painted should be replaced with stained glass panes to maintain the historic character of the building.

For *Window Type 2- Clearstory windows*, the mechanism that opens and closes the windows should be repaired along with the windows themselves and associated hardware to ensure and allow for proper ventilation of the auditorium. It is also recommended to investigate the possibility of an electrically controlled mechanism to operate these windows.

For *Window Type 3 – Center pivot windows* it is not recommended that the center, plywood infill panels be replaced.
Envelope Restoration

Overall restoration of the exterior requires the repair or replacement of all broken, rotted, or missing trim, clapboards, and shingles. All elements of the fabric must be scraped, primed, and repainted. Paint is critical in preserving the original fabric. It is recommended that a paint analysis be undertaken so that the original color scheme can be restored.

Project Cost: $157,585.00

h. Project 8 – Addition

An addition to the auditorium can increase the space available for events in the auditorium along with providing handicap accessibility to the dressing rooms. The proposed addition will provide 1,450 SF of additional space at the south end of the auditorium which will consist of two additional dressing/practice rooms, along with a gathering space. Sloping floors will provide ADA accessible routes to all dressing rooms, the walkway underneath the organ steps will be enclosed and will be used as storage. The height, scale, and mass of the addition, along with the design elements, will be harmonious and respectful to the historic structure.

Since there are no drawings of the existing foundations and concrete footings, we recommend that an investigation be undertaken to determine the depth of both the foundations and footings at the beginning of this project.

Project Cost: $657,150.00

The proposed floor plans for this project are as follows:
PROPOSED UPPER LEVEL FLOOR PLAN WITH ADDITION
2. Funding Opportunities

Round Lake Auditorium is a contributing property in the Round Lake Historic District and will qualify for a wide range of grant opportunities. The overall condition of the building is fair. Funding for preservation of the auditorium can sometimes be difficult due to relatively high construction costs. However, to assist and encourage preservation of historic structures there are specialized grants available.

Planning grants for specialized studies are available through the Preservation League of New York State which administers the Preserve NY grant and Technical Assistance Grant programs funded by the New York State Council on the Arts (NYSCA).

NYSCA also has grants which can cover operating costs for staff.

Funding for restoration projects are typically available through the Consolidated Funding Application (CFA) which includes a wide number of granting agencies. Of particular note is the Environmental Protection Fund (EPF) grant administered by the NYS Office of Parks, Recreation, and Historic Preservation. This is a matching grant that has recently been capped at $600,000. Empire State Development also has grants available for renovation projects such as this.

National Historic Landmarks, such as the Davis-Ferris Tracker Organ, may also be eligible for Save America’s Treasures Grants administered by the National Park Service.

3. Conclusion

As a contributing structure of the Round Lake Historic District listed on the National Register of Historic Places and the Davis-Ferris Tracker Organ designated a National Historic Landmark, the preservation of the auditorium and site is essential. The site of the auditorium and the structure itself facilitated the development of the village and to this day, continues to act as the epicenter of the community.

Based on our findings and in coordination with other consultants, the auditorium is found to be in fair condition. Fortunately, previous work has maintained most of the historic fabric of the structure and there are no imminent threats. The Village has been a good steward of the property and should be well placed to secure a significant portion of the funding through targeted grants.

4. Appendix

a. Archival Imagery
b. Cost Estimate
Appendix A - Archival Imagery
Fig. 11.4: Round Lake Auditorium ca. 1895. View of the south and west sides of the building, where you see roll-down canvas "walls," and the lower half of the bell tower open. Photo courtesy of the Village of Round Lake archives.
Fig.115: Lawn area in front of the southern annex portion of Round Lake Auditorium. Also visible are the surrounding permanent settlements. Photo is thought to have been taken in 1890 sometime before July. Photo courtesy of the Village of Round Lake archives.
Fig.116: Round Lake Auditorium, exact date unknown but thought to have been taken sometime around 1915 when the auditorium was fully enclosed; Photo courtesy of the Village of Round Lake archives.
The speaker’s stand with wooden benches gave way in 1885 to the larger auditorium.
Fig. 118: Round Lake Auditorium in a state of disrepair ca. 1973, View of the west facade of the building, where you see many windows have been broken and bases of wooden columns have rotted; Photo courtesy of the Village of Round Lake archives.
Appendix B - Cost Estimate
ROUND LAKE AUDITORIUM - RENOVATION & ADDITION

ROUND LAKE, NEW YORK

CONCEPTUAL DESIGN STAGE

LACEY THALER REILLY WILSON

ESTIMATE PREPARED BY:

danda inc.

CONSTRUCTION COST CONSULTANT
ROUND LAKE AUDITORIUM - RENOVATION & ADDITION

CONCEPTUAL DESIGN STAGE

LACEY THALER REILLY WILSON

LIST OF DOCUMENTS

OCTOBER XX, 2020

1-176 MASTER PLAN REPORT 8/20

FILE: PROJECT 4 FLOOR PLANS
1 PROPOSED GROUND FLOOR PLAN NO DATE
2 PROPOSED UPPER FLOOR PLAN NO DATE

FILE: PAGE 56-57
1 PROPOSED GROUND FLOOR WITH ADDITION NO DATE
2 PROPOSED UPPER FLOOR WITH ADDITION NO DATE

FILE: PROPOSED ADDITION - PROJECT
1 PROPOSED ADDITION NO DATE

OCTOBER 19, 2020 E-MAIL 10/19
OCTOBER 20, 2020 E-MAIL 10/20

LIST OF DOCUMENTS
PRICING BASED UPON CURRENT PREVAILING WAGES RATES, FRINGES, BENEFITS, PAYROLL TAXES; MARKET PLACE MATERIAL PRICING AND RENTAL COSTS FOR EQUIPMENT INCLUSIVE OF TRADE CONTRACTORS OH&P

AS DIRECTED WE ARE INCLUDING A 10% DESIGN AND CONSTRUCTION CONTINGENCY

WE ARE EXCLUDING ANY ESCALATION AS TIME FRAME UNDEFINED

DRERRSSING ROOM AREAS CONSIST OF 476 SF DRESSING ROOM, 155 SF ADJACENT TOLIETS, 40 SF DRESSING ROOM CLOSETS , 58 SF STORAGE AREA AND 51 SF ENTRY FOR A TOTAL OF 780 SF.

SEE ESTIMATE FOR AREA ANALYSIS TOTAL OF: 12,241 SF

WE HAVE INCLUDE A SCOPE OF ALL AREA NOR COVERED IN THE CURRENT DESCRIPTION OF THE SCOPE OF WORK

WE HAVE EXCLUDED THE MECHANICAL UPGRDADES INCLUSIVE OF IN-FLOOR RADIANT HEATING, FAN COIL UNITS AND VARIABLE REFRIGERANT FLOW SYSTEM AND RELATED WORK..

WE HAVE INCLUDE A ELECTRICAL SCOPE OF NEW DEVICES AND FIRE ALRAM SYSTEM (NOTE LIGHTING COVERED IN LINE FOR PROJECT #5.1)
ROUND LAKE AUDITORIUM - RENOVATION & ADDITION

LACEY THALER REILLY WILSON

OCTOBER XX, 2020

<table>
<thead>
<tr>
<th>PROJECT #</th>
<th>DESCRIPTION</th>
<th>CONCEPTUAL DESIGN STAGE</th>
<th>TOTAL PER PROJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>REPAIR AND REPLACEMENT OF CONCRETE FLOORING</td>
<td>$165,832</td>
<td>$220,737</td>
</tr>
<tr>
<td>12</td>
<td>PHASE 2 REPAIR AND REPLACEMENT OF CONCRETE FLOORING</td>
<td>$202,607</td>
<td>$269,689</td>
</tr>
<tr>
<td>24</td>
<td>REPLACEMENT OF SEATING</td>
<td>$21,000</td>
<td>$27,953</td>
</tr>
<tr>
<td>28</td>
<td>BELL TOWER STABILIZATION</td>
<td>$56,400</td>
<td>$75,074</td>
</tr>
<tr>
<td>3</td>
<td>FOUNDATION STABILIZATION</td>
<td>$4,500</td>
<td>$5,990</td>
</tr>
<tr>
<td>32</td>
<td>RELOCATION OF RESTROOMS AND CONCESSION AND ACCESSIBILITY UPGRADES - ROOMS 03,04,05 AND 06</td>
<td>$144,172</td>
<td>$191,906</td>
</tr>
<tr>
<td>51</td>
<td>TECHNICAL UPGRADES</td>
<td>$576,860</td>
<td>$767,854</td>
</tr>
<tr>
<td>56</td>
<td>DRESSING ROOM UPGRADES</td>
<td>$120,041</td>
<td>$159,785</td>
</tr>
<tr>
<td>82</td>
<td>NON-PROGRAMMED AREAS</td>
<td>$60,310</td>
<td>$80,278</td>
</tr>
<tr>
<td>85</td>
<td>ADDITION</td>
<td>$118,387</td>
<td>$157,585</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROJECT #</th>
<th>DESCRIPTION</th>
<th>CONCEPTUAL DESIGN STAGE</th>
<th>TOTAL PER PROJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>REPAIR AND REPLACEMENT OF CONCRETE FLOORING</td>
<td>$165,832</td>
<td>$220,737</td>
</tr>
<tr>
<td>12</td>
<td>PHASE 2 REPAIR AND REPLACEMENT OF CONCRETE FLOORING</td>
<td>$202,607</td>
<td>$269,689</td>
</tr>
<tr>
<td>24</td>
<td>REPLACEMENT OF SEATING</td>
<td>$21,000</td>
<td>$27,953</td>
</tr>
<tr>
<td>28</td>
<td>BELL TOWER STABILIZATION</td>
<td>$56,400</td>
<td>$75,074</td>
</tr>
<tr>
<td>3</td>
<td>FOUNDATION STABILIZATION</td>
<td>$4,500</td>
<td>$5,990</td>
</tr>
<tr>
<td>32</td>
<td>RELOCATION OF RESTROOMS AND CONCESSION AND ACCESSIBILITY UPGRADES - ROOMS 03,04,05 AND 06</td>
<td>$144,172</td>
<td>$191,906</td>
</tr>
<tr>
<td>51</td>
<td>TECHNICAL UPGRADES</td>
<td>$576,860</td>
<td>$767,854</td>
</tr>
<tr>
<td>56</td>
<td>DRESSING ROOM UPGRADES</td>
<td>$120,041</td>
<td>$159,785</td>
</tr>
<tr>
<td>82</td>
<td>NON-PROGRAMMED AREAS</td>
<td>$60,310</td>
<td>$80,278</td>
</tr>
<tr>
<td>85</td>
<td>ADDITION</td>
<td>$118,387</td>
<td>$157,585</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROJECT #</th>
<th>DESCRIPTION</th>
<th>CONCEPTUAL DESIGN STAGE</th>
<th>TOTAL PER PROJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>REPAIR AND REPLACEMENT OF CONCRETE FLOORING</td>
<td>$165,832</td>
<td>$220,737</td>
</tr>
<tr>
<td>12</td>
<td>PHASE 2 REPAIR AND REPLACEMENT OF CONCRETE FLOORING</td>
<td>$202,607</td>
<td>$269,689</td>
</tr>
<tr>
<td>24</td>
<td>REPLACEMENT OF SEATING</td>
<td>$21,000</td>
<td>$27,953</td>
</tr>
<tr>
<td>28</td>
<td>BELL TOWER STABILIZATION</td>
<td>$56,400</td>
<td>$75,074</td>
</tr>
<tr>
<td>3</td>
<td>FOUNDATION STABILIZATION</td>
<td>$4,500</td>
<td>$5,990</td>
</tr>
<tr>
<td>32</td>
<td>RELOCATION OF RESTROOMS AND CONCESSION AND ACCESSIBILITY UPGRADES - ROOMS 03,04,05 AND 06</td>
<td>$144,172</td>
<td>$191,906</td>
</tr>
<tr>
<td>51</td>
<td>TECHNICAL UPGRADES</td>
<td>$576,860</td>
<td>$767,854</td>
</tr>
<tr>
<td>56</td>
<td>DRESSING ROOM UPGRADES</td>
<td>$120,041</td>
<td>$159,785</td>
</tr>
<tr>
<td>82</td>
<td>NON-PROGRAMMED AREAS</td>
<td>$60,310</td>
<td>$80,278</td>
</tr>
<tr>
<td>85</td>
<td>ADDITION</td>
<td>$118,387</td>
<td>$157,585</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AREA OF PROJECT SUMMARY</th>
<th>CONCEPTUAL DESIGN STAGE</th>
<th>TOTAL PER PROJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPAIR AND REPLACEMENT OF CONCRETE FLOORING</td>
<td>2,740 SF</td>
<td>$2,614,000</td>
</tr>
<tr>
<td>REPAIR AND REPLACEMENT OF CONCRETE FLOORING</td>
<td>2,970 SF</td>
<td></td>
</tr>
<tr>
<td>RELOCATION OF RESTROOMS AND CONCESSION AND ACCESSIBILITY UPGRADES - ROOMS 03,04,05 AND 06</td>
<td>901 SF</td>
<td></td>
</tr>
<tr>
<td>DRESSING ROOM UPGRADES</td>
<td>780 SF</td>
<td></td>
</tr>
<tr>
<td>NON-PROGRAMMED AREAS</td>
<td>3,470 SF</td>
<td></td>
</tr>
<tr>
<td>TOTAL RENOVATED AREAS</td>
<td>10,861 SF</td>
<td></td>
</tr>
<tr>
<td>ADDITION</td>
<td>1,380 SF</td>
<td></td>
</tr>
<tr>
<td>TOTAL PROJECT AREAS</td>
<td>12,241 SF</td>
<td></td>
</tr>
</tbody>
</table>

FILE: ROUND LAKE AUDITORIUM 10-XX-20

ESTIMATE

PAGE: 4 OF 6
<table>
<thead>
<tr>
<th>PROJECT #</th>
<th>DESCRIPTION</th>
<th>QUANTITY</th>
<th>UNIT PRICE</th>
<th>EXTENSION</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>REPAIR AND REPLACEMENT OF CONCRETE FLOORING</td>
<td>2,740 SF</td>
<td>$165,832</td>
<td>$220,737</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SAW CUT OF EXISTING SLAB-ON-GRADE</td>
<td>210 LF</td>
<td>$19.30</td>
<td>$4,054</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>REMOVE OF EXISTING SLAB-ON-GRADE</td>
<td>2,740 SF</td>
<td>$3.70</td>
<td>$10,147</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>HAUL AWAY REMOVED MATERIALS</td>
<td>51 CY</td>
<td>$35.60</td>
<td>$1,806</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>RE-HAND TRIM SUB-BASE</td>
<td>2,740 SF</td>
<td>$0.80</td>
<td>$2,183</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NEW SLAB-ON-GRADE - SCREED</td>
<td>2,740 SF</td>
<td>$1.20</td>
<td>$3,276</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NEW SLAB-ON-GRADE - MESH</td>
<td>3.014 SF</td>
<td>$2.50</td>
<td>$7,532</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NEW SLAB-ON-GRADE - CIP</td>
<td>51 CY</td>
<td>$265.40</td>
<td>$13,536</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>NEW SLAB-ON-GRADE - TROWEL & CURE</td>
<td>2,740 SF</td>
<td>$1.60</td>
<td>$4,381</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>REPLACEMENT OF EXISTING SPACES INCL. OF RAMPS AND PLATFORMS ETC.</td>
<td>2,740 SF</td>
<td>$43.40</td>
<td>$118,918</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>[901 SF]</td>
<td>$160.01</td>
<td>$144,172</td>
<td>$191,906</td>
</tr>
<tr>
<td>12</td>
<td>PHASE 2 REPAIR AND REPLACEMENT OF CONCRETE FLOORING</td>
<td>2,970 SF</td>
<td>$202,607</td>
<td>$269,689</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>SAW CUT OF EXISTING SLAB-ON-GRADE</td>
<td>414 LF</td>
<td>$19.30</td>
<td>$7,991</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>REMOVE OF EXISTING SLAB-ON-GRADE</td>
<td>2,970 SF</td>
<td>$3.70</td>
<td>$10,999</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>DEMOLITION OF AREA LESS ITEM 4</td>
<td>901 SF</td>
<td>$8.40</td>
<td>$7,566</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>HAUL AWAY REMOVED MATERIALS</td>
<td>45 CY</td>
<td>$35.60</td>
<td>$1,602</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>NEW MILLWORK COUNTERS</td>
<td>15 LF</td>
<td>$640.00</td>
<td>$9,600</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>NEW INTERIOR WALLS</td>
<td>996 SF</td>
<td>$10.50</td>
<td>$10,458</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>NEW INTERIOR FRAMES, DOORS AND HARDWARE</td>
<td>3 EA</td>
<td>$1,005.00</td>
<td>$3,015</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>NEW FINISHES - BASES, FLOOR, WALL AND CEILING</td>
<td>901 SF</td>
<td>$1.50</td>
<td>$1,352</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>NEW TOILET PARTITIONS & ACCESSORIES</td>
<td>5 EA</td>
<td>$1,500.00</td>
<td>$7,500</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>NEW PLUMBING INCL. FIXTURE, PIPING, CONNECTION TO SANITARY MANHOLE & FLOW FLOW PREVENTOR</td>
<td>11 FX</td>
<td>$2,197.00</td>
<td>$24,167</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>NEW FIRE PROTECTION (DRY)</td>
<td>901 SF</td>
<td>$10.50</td>
<td>$9,461</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>NEW MECHANICAL</td>
<td>901 SF</td>
<td>$0.00</td>
<td>N.A.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>NEW ELECTRICAL (LESS LIGHTING - SEE 5.1)</td>
<td>901 SF</td>
<td>$12.00</td>
<td>$10,812</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>TECHNICAL UPGRADES</td>
<td>5 EA</td>
<td>$1,800.00</td>
<td>$9,000</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>[901 SF]</td>
<td>$160.01</td>
<td>$144,172</td>
<td>$191,906</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>[901 SF]</td>
<td>$160.01</td>
<td>$144,172</td>
<td>$191,906</td>
</tr>
<tr>
<td>29</td>
<td>EXTERIOR RENOVATIONS</td>
<td>780 SF</td>
<td>$120,041</td>
<td>$159,785</td>
<td></td>
</tr>
</tbody>
</table>

FILE: ROUND LAKE AUDITORIUM 10-XX-20 ESTIMATE PAGE: 5 OF 6
ROUND LAKE AUDITORIUM - RENOVATION & ADDITION

LACEY THALER REILLY WILSON
OCTOBER XX, 2020

<table>
<thead>
<tr>
<th>PROJECT #</th>
<th>DESCRIPTION</th>
<th>CONCEPTUAL DESIGN STAGE</th>
<th>QUANTITY</th>
<th>U/M</th>
<th>UNIT PRICE</th>
<th>EXTENSION</th>
<th>TOTAL</th>
<th>TOTAL PER PROJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>WINDOW RESTORATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>- WINDOW TYPE 1 - STAINED GLASS WINDOWS</td>
<td></td>
<td>9</td>
<td>EA</td>
<td>$925.00</td>
<td>$8,325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>- WINDOW TYPE 2 - CLEARSTORY WINDOWS</td>
<td></td>
<td>814</td>
<td>SF</td>
<td>$21.90</td>
<td>$18,656</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>- WINDOW TYPE 3 - CENTER PIVOT WINDOWS</td>
<td></td>
<td>138</td>
<td>SF</td>
<td>$16.80</td>
<td>$2,318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>- GLASS DOOR - LEAFS & TRANSOMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>ENVELOPE RESTORATION INCL SOFFITS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>NON-PROGRAMMED AREAS ALLOWANCE</td>
<td></td>
<td>3,470</td>
<td>SF</td>
<td>$17.38</td>
<td>$60,310</td>
<td>$80,278</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>- ALL ELEMENTS TO BE SCRAPED, PRIMED AND UNPAINTED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>ADDITION</td>
<td></td>
<td>1,380</td>
<td>SF</td>
<td>$510.00</td>
<td>$657,150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>- NEW ISOLATED FOOTING</td>
<td></td>
<td>6</td>
<td>CY</td>
<td>$510.00</td>
<td>$3,060</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>- NEW CONTINUOUS EXTERIOR FOOTING</td>
<td></td>
<td>17</td>
<td>CY</td>
<td>$1,137.00</td>
<td>$19,329</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>- NEW EXTERIOR FOUNDATION WALL</td>
<td></td>
<td>150</td>
<td>CY</td>
<td>$45.00</td>
<td>$6,750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>- EXCAVATION AND BACKFILL FOR NEW FOUNDATION</td>
<td></td>
<td>1,725</td>
<td>SSF</td>
<td>$20.30</td>
<td>$35,013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>- NEW EXTERIOR FAÇADE TO INTERIOR WALL</td>
<td></td>
<td>1,150</td>
<td>LF</td>
<td>$10.50</td>
<td>$12,075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>- NEW EXTERIOR FAÇADE</td>
<td></td>
<td>2,660</td>
<td>SF</td>
<td>$85.00</td>
<td>$226,100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>- NEW ROOF ASSEMBLY</td>
<td></td>
<td>1,725</td>
<td>RSF</td>
<td>$22.00</td>
<td>$37,950</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>- NEW INTERIOR WALLS</td>
<td></td>
<td>510</td>
<td>LF</td>
<td>$9.50</td>
<td>$4,845</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>- NEW STRUCTURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>- NEW FINISHES - BASES, FLOOR, WALL AND CEILING</td>
<td></td>
<td>1,380</td>
<td>SF</td>
<td>$35.30</td>
<td>$48,717</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>- NEW INTERIOR FRAMES, DOORS AND HARDWARE</td>
<td></td>
<td>2</td>
<td>EA</td>
<td>$1,005.00</td>
<td>$2,010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>- NEW MISC. PAINTING - RAILS, DOORS, FRAMES ETC.</td>
<td></td>
<td>1,380</td>
<td>SF</td>
<td>$3.00</td>
<td>$4,140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>- NEW SIGNAGE</td>
<td></td>
<td>1,380</td>
<td>SF</td>
<td>$2.50</td>
<td>$3,450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>- NEW FIRE PROTECTION (DRY)</td>
<td></td>
<td>1,380</td>
<td>SF</td>
<td>$10.50</td>
<td>$14,490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>- NEW MECHANICAL</td>
<td></td>
<td>1,380</td>
<td>LF</td>
<td>$16.00</td>
<td>$22,080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>- NEW ELECTRICAL (LESS LIGHTING - SEE 5.1)</td>
<td></td>
<td>1,380</td>
<td>SF</td>
<td>$12.00</td>
<td>$16,560</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 103 | SUBTOTAL | | | | | | | $1,963,801 |

FILE: ROUND LAKE AUDITORIUM 10-XX-20
ESTIMATE
PAGE: 6 OF 6